

1) find combinations to create desired result $P(I$ not melted $)+P(3$ not melted $)+P(4$ not melted $)$ T
probal torder doesnit matter = combinations
$Z N M\left[\begin{array}{c}{[\text { combinations to choose 2NM }} \\ 71\end{array}\right]$ [combos to choose ZM]

$$
\frac{7!}{2!(7-2)!} \cdot \frac{3!}{2!(3-2)!}=\frac{7!}{2!\cdot 5!} \cdot \frac{3!}{2!}=\frac{7 \cdot 6 \cdot 3}{2}
$$

NI I [combos to choose 3 NM]. [combos to choose 1 M]

$$
\frac{7!}{3!(7-3)!} \cdot \frac{3!}{(3-1)!}=\frac{7!}{3!\cdot 4!} \cdot \frac{3!}{2!}=\frac{7 \cdot 6 \cdot 5}{2.1}=\frac{7.3 .5}{105}
$$

[Combos to choose 4 NM$]$

$$
\frac{7!}{4!(7-4)!}=\frac{7!}{4!\cdot 3!}=\frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1}=7 \cdot 5=35
$$

2) add. $63+105+35=203$
3) figure out how many possible combinations
choose 4 bars from 10 total

$$
{ }_{10} C_{4}=\frac{10!}{4!(10-4)!}=\frac{10!}{4!\cdot 6!}=\frac{10 \cdot 4 \cdot 8 \cdot 7}{4 \cdot 8 \cdot 2 \cdot 2}=10 \cdot 3 \cdot 7=210
$$

4) probability $=\frac{\text { combos to form desired result }}{\text { possible combos }}$

$$
\text { probability }=\frac{203}{210}
$$

ALT METHOD
probability of at least $2 N M=1$ - probability of 1 NM
${ }^{\text {compos for }} 1 \mathrm{NM}=$ compos to choose 1 MM - combos to choose 3 M

$$
\frac{7!}{1!(7-6)!} \cdot \frac{3!}{3!(3-3)!}=7
$$

total possible combos $=210$

$$
\text { Probability of at least } 2 N M=1-\frac{7}{210}=\frac{203}{210}
$$

14. Think about the group of numbers that are 7 digits long. For example, the number $1,215,389$ is a number that is 7 digits long. Now, think of the group of numbers that are 7 digits long but have no " 1 " anywhere in the number. An example here would be the number $3,895,542$. Does this latter group represent more than half of the former group? That, do 7 -digit numbers having no " 1 " in their decimal representation

$$
\begin{gathered}
\text { all 7-digit \#s } \frac{9 \cdot 10}{8 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10}=9 \cdot 10^{6} \\
\text { 7-digit \#s wi no } 1 \frac{8}{9} \cdot 9 \cdot 9 \cdot 9 \cdot 9=8 \cdot 9^{6} \\
\frac{8 \cdot 9^{4}}{9 \cdot 10^{6}}=0.47 \quad N 0
\end{gathered}
$$

15. You are making a bag consisting of 20 pieces of candy to give to your cousin for Halloween and you can choose from 8 different types of candy. Assuming that you must give your cousin at least one of each type of candy, how many different bags can you make? *sticks + stones problem
+20 stones $=20$ pieces of candy
000000000000000000000 * 19 places to put a stick
*you have 7 sticks to ensure you get all 8 types of candy

$$
\frac{19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13}{7!}=50388
$$

* could al so do 19 C 7 account for repeats

16. A class is made up of 10 girls and 7 boys. In how many ways can we make a 4-person debate team that has only boys? In how many ways can we make a 4-person debate team that has 2 boys and 2 girls? In how many ways can we make a 4-person debate team that has at least 1 girl? k combinations. or der doesnit matier only boys $=$ choose 4 from $7=\frac{7!}{4!(7-4)!}=\frac{7!}{4!\cdot 3!}=\frac{7 \cdot 6 \cdot 5}{3 \cdot 2}=7 \cdot 5=35$
$\begin{aligned} 2 \text { boys } 2 \text { girls } & =\text { choose } 2 \text { from } 7 \text {. choose } 2 \text { from } 10 \\ & =71\end{aligned}$

$$
\begin{aligned}
s & =\text { choose } 2 \text { from } 7 \cdot \text { moose } 2 \text { from } 10 \\
& =\frac{7!}{2!(7-2)!} \cdot \frac{10!}{2!(10-2)!}=\frac{7 \cdot 6^{3}}{x}=\frac{10 \cdot 9}{2 \cdot 1}=7 \cdot 3 \cdot 5 \cdot 9=445
\end{aligned}
$$

at least 1 girl $=1$ girl or 2 girls or 3 girls or 4 girls
c must add each of these

$$
\frac{10!}{1!(10-1)!} \cdot \frac{7!}{3!(7-3)!}=10 \cdot \frac{7 \cdot 6 \cdot 5}{3 \cdot 2}=10 \cdot 7 \cdot 5=350
$$

$$
\begin{aligned}
& 3 G \quad\left[\begin{array}{l}
\text { combs to get } 3 \text { girls combos to get } 1 \text { boy } \\
\frac{10!}{3!(10-3)!} \cdot \frac{7!}{1!(7-1)!}=\frac{10 \cdot 9 \cdot 9}{3 \cdot 2} \cdot 7=840 \\
4 G \quad\left[\begin{array}{c}
\text { combos to get } \\
\frac{10 \text { girl }}{4!(10-4)!}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2}=210
\end{array}\right. \\
350+945+840+210=2345
\end{array}\right.
\end{aligned}
$$

ALT. METHDD fOR LAST Q
ways to get at least 1 girl = total combinations of $b+g$-ways to get all boys

$$
\begin{aligned}
& { }_{17} \mathrm{C}_{4} \quad-\quad{ }_{7} \mathrm{C}_{4} \\
& \begin{array}{c}
\frac{17!}{4!(17-4)!} \\
\frac{4 \cdot 5 \cdot 5}{17 \cdot 46 \cdot 15 \cdot 14} \\
4 \cdot 5 \cdot 2
\end{array} \\
& -\frac{7!}{4!(7-4)!} \\
& \downarrow \\
& 2380-35 \\
& \frac{\downarrow}{2345}
\end{aligned}
$$

