The Taxicab Metric

Olga Radko Math Circle

February 21, 2021

1 The Taxicab Metric in the Plane

Normally when we discuss length in geometry between two points $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in the plane, we are really talking about the Euclidean distance (or Euclidean metric) on \mathbb{R}^{2}

$$
d_{E}(x, y)=d_{E}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}
$$

which measures the straight-line distance between them. This notion of distance is not as meaningful to, for instance, a taxicab driver in New York City. He or she cannot drive through a building to arrive at the destination in a straight line, and is more likely to say that a location is "four blocks away". To capture this notion of distance, we define a new metric, or distance function.

Definition 1 The taxicab distance between two points $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in the real plane \mathbb{R}^{2} is defined by

$$
d_{T}(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|
$$

Problem 1 For each of the following pairs of points $x, y \in \mathbb{R}^{2}$, compute their Euclidean distance $d_{E}(x, y)$ as well as their taxicab distance $d_{T}(x, y)$. Which one is larger?
a. $x=(0,0), y=(1,0)$
b. $x=(0,4), y=(3,0)$
c. $x=(-1,6), y=(4,-6)$
d. $x=(2,3), y=(26,10)$

Problem 2 Pick any x, y in the plane \mathbb{R}^{2}.
a. Draw a path from x to y that corresponds to the distance $d_{E}(x, y)$, in the sense that its length equals $d_{E}(x, y)$.
b. Draw a path from x to y that corresponds to the distance $d_{T}(x, y)$, in the sense that its length equals $d_{T}(x, y)$. Can you draw more than one such path?

In Euclidean geometry we have various classical shapes, such as the circle, which can be considered as the set of all points the same distance from the center, and the line segment between two points p, q, which can be considered as the set of all points x such that $d_{E}(p, x)+d_{E}(x, q)=d_{E}(p, q)$. It is natural to ask what these same sets look like if we use the taxicab distance instead of the Euclidean one.

Problem 3 a. Draw the taxicab unit circle

$$
\left\{x \in \mathbb{R}^{2}: d_{T}(x,(0,0))=1\right\}
$$

b. Draw the taxicab line segment between p and q

$$
\left\{x \in \mathbb{R}^{2}: d_{T}(p, x)+d_{T}(x, q)=d_{T}(p, q)\right\}
$$

2 Properties of the Taxicab Metric

We will now prove some useful properties of both the Euclidean and taxicab metrics; they turn out to not be so different after all.

Problem 4 a. Prove that for any $x, y \in \mathbb{R}^{2}, d_{E}(x, y) \geq 0$ and $d_{T}(x, y) \geq 0$.
b. Prove that we have equality in part (a) in either case if and only if $x=y$.
c. Prove that for any $x, y \in \mathbb{R}^{2}, d_{E}(x, y)=d_{E}(y, x)$ and $d_{T}(x, y)=d_{T}(y, x)$.

Recall from Euclidean geometry that we have the triangle inequality

$$
A C \leq A B+B C
$$

for any three points A, B, C in the plane. (where the above quantities denote the lengths of the respective Euclidean line segments)
Problem 5 a. Using Problem 2a, explain why we have the Euclidean triangle inequality in the plane

$$
d_{E}(x, z) \leq d_{E}(x, y)+d_{E}(y, z)
$$

b. (i) Prove that for any real numbers a, b

$$
|a+b| \leq|a|+|b|
$$

(ii) Prove the taxicab triangle inequality in the plane

$$
d_{T}(x, z) \leq d_{T}(x, y)+d_{T}(y, z)
$$

(Hint: Expand out each of $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$, and $z=\left(z_{1}, z_{2}\right)$, and write down both sides of the above expression in terms of these. How can you use part (i)?)
c. Using Problem 2 and part (a), explain why for any $x, y \in \mathbb{R}^{2}$

$$
d_{E}(x, y) \leq d_{T}(x, y)
$$

When do we have equality?

3 Distance in Higher Dimensions

While the analogy of taxicabs breaks down in other dimensions, we can still discuss both the Euclidean and taxicab metrics in \mathbb{R}^{n} as well:

$$
\begin{aligned}
& d_{E}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}} \\
& d_{T}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\left|x_{1}-y_{1}\right|+\ldots+\left|x_{n}-y_{n}\right|
\end{aligned}
$$

Problem 6 For each of the following ordered n-tuples of points $x, y \in \mathbb{R}^{n}$, compute their Euclidean distance $d_{E}(x, y)$ as well as their taxicab distance $d_{T}(x, y)$.
a. $x=(1,1,3,4), y=(-1,7,1,0)$
b. $x=(0,1,2,3,4), y=(5,6,7,8,9)$

We would very much like the properties we proved in Problems 4 and 5 to remain true in higher dimensions; indeed they do.

Problem $7 \quad$ a. Prove that for any $x, y \in \mathbb{R}^{n}, d_{E}(x, y) \geq 0$ and $d_{T}(x, y) \geq 0$.
b. Prove that we have equality in part (a) in either case if and only if $x=y$.
c. Prove that for any $x, y \in \mathbb{R}^{n}, d_{E}(x, y)=d_{E}(y, x)$ and $d_{T}(x, y)=d_{T}(y, x)$.

Problem 8 Prove the taxicab triangle inequality in \mathbb{R}^{n} (the Euclidean triangle inequality is also true, but well beyond the scope of this worksheet)

$$
d_{T}(x, z) \leq d_{T}(x, y)+d_{T}(y, z)
$$

4 Bonus Section: More Taxicab Geometry

Problem 9 Consider the following shapes in \mathbb{R}^{2}, which are based on typical Euclidean shapes.
a. Draw the taxicab ellipse with foci $p, q \in \mathbb{R}^{2}$ and parameter $b>d_{T}(p, q)$

$$
\left\{x \in \mathbb{R}^{2}: d_{T}(x, p)+d_{T}(x, q)=b\right\}
$$

b. Draw the taxicab perpendicular bisector of $p, q \in \mathbb{R}^{2}$

$$
\left\{x \in \mathbb{R}^{2}: d_{T}(x, p)=d_{T}(x, q)\right\}
$$

c. Draw the taxicab hyperbola with foci $p, q \in \mathbb{R}^{2}$ and parameter $b \in \mathbb{R}$

$$
\left\{x \in \mathbb{R}^{2}:\left|d_{T}(x, p)-d_{T}(x, q)\right|=b\right\}
$$

