Ruler and Compass construction of regular polygons

Oct 16, 2011

Polygons

A regular n-gon is a polygon with n sides of equal length and all angles
between adjacent sides equal. An alternative description is that all
corners of a regular n-gon lie on a fixed circle, and the angle between
two adjacent corners, as seen from the center of the circle, is 27 /n. The
theme of this work sheet is to construct different regular n-gons.

We list some polygons and comment of the level of conceptual dif-
ficulty constructing them with ruler and compass. Note that with in-
creasing n there is also increasing difficulty in the accuracy of the tools
needed. There exists free downloadable software (e.g. Geogebra) which
simulates ruler and compass constructions without accuracy problems.)

As warm-up we try to construct as many of the polygons on the
list as we can. With some experience with basic concepts of ruler and
compass constructions, the difficulties up to medium level should be
manageable.

1. equilateral triangle (n = 3, easy, unless you have never worked
with ruler and compass.)

hexagon (n = 6, almost as easy)
square (n = 4, medium)

regular octogon (n = 8, medium)

A

regular 12-gon ( medium. Abstract question: suppose you can
already do a regular n-gon, can you construct a regular 2n-gon ?)

6. regular pentagon (n = 5, difficult)
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7. regular 15-gon (medium, provided one has already done 5-gon.
Abstract question: suppose you can already construct the regular
n -gon and regular m-gon where n and m have no common divisor,
can you construct the regular nm-gon?)

8. regular 17-gon (very difficult)

9. Abstract question: suppose n = 2" 4+ 1 is a prime number. Can
you construct the regular n-gon? very difficult.)



The algebraic approach

Ruler and compass constructions can be viewed as geometric pendants
of algebraic manipulations, a point of view helpful in solving the more
difficult cases of constructions of n-gons. We build up the algebraic
point of view through a sequence of problems with increasing difficulty.

1.

10.

Given two line segments of length a and b, construct a line segment
of length a + .

Given a number line on which the points 0, z, y are marked (assume
both are positive) construct the point  + y on the number line.

Given a number line on which the points 0, x are marked, construct
the point —x on the number line.

Given a number line on which the points 0, x, y are marked (assume
x positive and y negative), construct the point z+y on the number
line.

Given a line segment, construct a line segment of 2 times the
length.

Given a line segment, construct a line segment of 3 times the
length.

Given a line segment, construct a line segment of 1/2 times the
length.

Given a line segment, construct a line segment of 1/3 times the
length. (Try this first, but if you have trouble with this, try the
exercise ahead.)

Given a line segment, construct a line segment of z times the
length, where z is the ratio of two other given auxiliary line seg-
ments. Hint: this construction uses similar triangles with one
common corner.

Given a number line on which the points 0, 1, x, and y are marked
(assume x, y positive). Construct the point xy on the number line.
(Use previous exercise)



11.

12.

13.

14.
15.

Given a number line on which the points 0, 1, and p and ¢ are
marked. Assume p is positive. Construct the point  on the num-
ber line which solves the equation pz+¢ = 0 (Similar as previous.)

Given a number line on which the points 0, 1, and x are marked.
Assume z is positive. Construct the point /= on the number
line. (Hint this construction uses right triangles, the types for
which a® 4+ b*> = ¢ by Pythagoras. The height h above the side
¢ divides the side ¢ into p + ¢. Use pqg = h? or a? = pc, which is
half of Pythagoras’ theorem. You may want to remember Thales’
theorem to construct the right triangle.)

Given a number line on which the points 0, 1, p, and p are marked
(assume all positive) . Construct two points s and ¢ on the number
line such that s+t = p and st = ¢q. (Note that s, ¢ are the solutions
to the quadratic equation x?> — px 4+ ¢ = 0, which is the same
equation as (x — s)(x —t) = 0.) Use the hints from the previous
exercise.

Do the same as before, but assume p positive and ¢ negative.

Assume points 0,1,z marked on the number line with = > 0.
Construct the point z'/4

The above exercises show how to solve arbitrary linear and then
quadratic equations geometrically, producing a line segment or a point
on the number line representing the solution. Iterating the solution of
quadratic equations can solve even more complicated equations such as
in the last exercise.

Conversely, every construction with ruler and compass consists of a
sequence of basic constructions producing new points by intersecting
line with line, or line with circle, or circle with circle. Each of these basic
constructions in Cartesian coordinates can be expressed as the solution
of a linear (line and line) or quadratic equation (line with circle or cirlce
with circle).



The pentagon

The following steps will lead to a construction of the pentagon.

1.

Sketch a regular pentagon with all five diagonals. Prove that the
three adjacent angles at any given corner of the pentagon are equal.

In the same figure consider two adjacent sides of the pentagon and
the diagonal that completes the triangle. In the same figure find a
similar triangle inside this triangle, and prove rigorously that these
triangles are similar isosceles triangles (This means comparing all
the angles).

Denote the sidelength of the pentagon by 1 and the lengths of each
leg of the smaller isosceles triangle in the previous exercise as x.
Use both previous exercises to prove = : 1 = 1 : (14 z). Write
a quadratic equation for . (BTW: This number x is called the
golden ratio.)

Use the previously discussed geometric solution of quadratic poly-
nomials to construct a line segment of length x.

Use this line segment to construct the regular pentagon.






Complex numbers

With 0 and two points x, y marked on the number line we can construct
the sum = + y (one dimensional algebra).

Now assume we have three arbitrary points in the plane, not neces-
sarily on one line, marked 0, a, b (for emphasis of two-dimensionality we
use different letters of the alphabet). There is also a reasonable way to
define a sum a + b. It is the fourth corner of a parallelogram of which
two sides are the line segments Oa and 0b.

1. Pick three points in the plane, not on a common line. Mark them
0, a, b and construct a + b.

2. Is this operation commutative?
3. Is this operation associative?

4. How does this construction compare to the usual addition on the
real line, i.e. when the points 0, a, b happen to be on a single line?

5. Given two points marked 0 and a in the plane, which point in the
plane is —a 7

Likewise, if we are given four points on a line marked 0,1, z,y (we
always assume the points marked 0 and 1 are different), then we can
contstruct the point xy. Now given any four points in the plane marked
0,1,a,b, there is also a reasonable way to construct a product ab de-
scribed as follows:

1) if |a| denotes the distance from a to 0, then we have the ratio

jab] = [b] = |a] : 1]

(that is unless |a| = 0, in which case ab = 0) and 2) the angle (1,0, ab)
is the sum of the angles (1,0,a) and (1,0,b).

1. Pick four points in the plane, (for full appreciation no three should
be on on a common line). Mark them 0, 1, a,b and assume 0 # 1.
Construct ab.

2. Is this operation commutative?
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3. Is this operation associative?

4. Do we have the distributive law (a 4 b)c = ac + be (this is easiest
when we interpret multiplication by ¢ as a rotation by the angle
(1,0, ¢) combined with a dilation by the factor |c|/|1].

5. Given three different points marked 0,1 and a, which point in the
plane is 1/a ?.

The operations of addition and multiplication above give the plane
a very similar algebraic structure as the number line. Points on the
line are called real numbers, while the points in the plane are called
complex numbers. The real numbers are embedded into the complex
numbers, they lie on the line passing through the points 0 and 1.

Introducing a Cartesian coordinate system one can describe complex
numbers via a pair of real numbers: a = (x,y). Typically one arranges
things such that the complex 0 has coordinates (0,0) and the complex
1 has coordinates (1,0). The point (0,1) is usually denoted by i and
called the imaginary unit. Note that with two points marked 0,1,
there is a choice of two coordinate systems as above, which differ by a
reflection across the real line.

1. Show that i2 = —1 using the definition of the product above.

2. For any complex number a in the plane construct two points s,
with s = t? = x.

3. Solve an arbitrary quadratic equation in complex numbers. (This
is a bit more elaborate exercise, that can be skipped at first read-
ing. That every quadratic equation has two solutions is a dist-
nguishing feature between real and complex numbers, note that

2:

the equation z* = —1 cannot have a real solution.)

4. How can we express the sum and product of complex numbers in
coordinates?



The heptadecigon (n = 17)

Sketch a regular seventeen-gon in the complex number plane with center
at 0 and one corner at 1. Let a denote one of the corners adjacent to 1.

Note: using actual physical ruler and compass, it requires great care in
accuracy for the result of the following steps to be satisfactory.

1.
2.

2

Find the powers a?, a® etc. in your figure. Prove a!” = 1.

Prove that 317, a” = 0. (Hint: denote the left hand side by b and
prove first ba = b.

Note that a™™ = a'™™. We use this to write a~' for a'® etc.
Identify

8
n=1
by comparing with the previous exercise.

Denote s =a®+at+a?+a'l+a' +a®>+a'+a®and t =
a "+a %4+a+a3+ad+a’+a’+a’. Identify s and ¢t approximetely
in your figure. Prove they are on the real number line (hint: pair
a" with a™"). Which is positive and which is negative?

Prove s+t = —1 and st = —4. The latter is the most tedious calcu-
lation of this worksheet, maybe one can do this smartly /pictorially?
Construct s and ¢ by solving geometrically a quadratic equation
(involving only real numbers).

Denote u = a* +a'+a' +a*and v = a® +a?+ a® + d°
Prove these are real numbers and approximately identify them in
the figure.

Prove u + v = s and wv = —1. Use this to construct v and v.

Denote p =a " +a%4+a+a" and ¢ = a® + a3+ a® + .
Determine p and ¢ similarly to above.

Denote ¢ = a~! 4+ a' and d = a=* + a*, identify these in the figure,
determine ¢ + d and cd and solve geometrically for ¢ and d.



10. Using ¢, construct a and thus the regular 17-gon. Note that this
requires solving a quadratic equation in complex numbers. How-
ever, the solution is simple when studying the intersection point
of the real line and the line connecting the points  and =~

The above construction seemed to depend on a series of algebraic
miracles. To shed some light on these miracles, one should note that
—8,—4,—-2,—1,1,2,4,8 are exactly the remainders of square numbers
after division by 17. The numbers —4, —1,1,4 are exactly the remain-
ders of fourth powers after division by 17. The numbers —1,1 are
exactly remainders of eighth powers after division by 17. With this
idea and an abstract approach the above miracles gain a lot of clarity.
Indeed one can repeat the scheme whenever a number n = 2™ + 1 is
a prime number (“Fermat number”) such as for example 2 + 1 = 17.
Then one can similarly construct these n-gons. The 5-gon is also of this
type (even the 3-gon) though the construction of the pentagon was dis-
covered “by bare hands” and described in Euclids Elements around 300
BC, long before the discovery of the above scheme. The next Fermat
number is 257, hence one can construct the 257-gon.

We develop the construction of the pentagon using the same scheme
as above.
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1. identify the pentagon as having corners 1, a, a?, a®, a* for some com-

plex number solving a® = 1.

2. Set r = a+a"!and t = a*+ a2. Identify these (real numbers) in
your figure and verify s +t = —1, st = —1

3. Use s and t to construct the pentagon.

The above scheme was developed by Carl Friedrich Gauss in the late
17 hundreds. Understanding the algebraic structure behind the scheme
very carefully (Galois theory), it could even be proved that there are
n-gons that cannot be constructed by ruler and compass alone (Gauss-
Wantzel theorem). The first example is the 7-gon. Indeed, the only
n-gons that can be constructed by ruler and compass are the ones that
can be done by the methods developed on this worksheet.
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