An Introduction to Polyhedra

UCLA Olga Radko Math Circle Beginners 2

2/21/2021

Warm-Up: Fraction Clinic
Question 1:
$\frac{2}{3}-\frac{1}{3}=$ \qquad
$\frac{2}{3}-\frac{1}{2}=$ \qquad
$\frac{2}{3}-\frac{1}{4}=$ \qquad
$\frac{2}{3}-\frac{1}{5}=$ \qquad

$$
\begin{aligned}
& \frac{2}{3} \times 3 \div 5= \\
& \frac{2}{3} \div 5 \times 3= \\
& \frac{2}{3} \times \frac{3}{5}= \\
& \frac{2}{3} \div \frac{5}{3}= \\
&
\end{aligned}
$$

Question 2: Put the correct sign, > , <, or $=$, in between the numbers without bringing fractions to the common denominator and without guessing.

This week, we'll dive into the world of polyhedral!

Lesson

Problem 1: Below are some examples of polyhedra:

a. Based on the examples above, what are some characteristics you notice about polyhedra?
b. In order to make a polyhedron we need three things:
\qquad : A point which is at the corner of a polyhedron
ii. \qquad : A line segment that connects two \qquad .
iii. \qquad : A polygon that is bounded by several \qquad of the polyhedron.
iv. What is the smallest number of vertices and edges you need to make a face? Draw the shape.
\qquad Edges and \qquad Vertices
c. Based on what we've seen so far, how can we define a polyhedron?
i. A polyhedron is a \qquad shape made up of several \qquad ,
straight \qquad , and \qquad -.

Problem 2: Answer the questions below about the following polyhedron:
a. How many vertices does the polyhedron have?
b. How many edges does the polyhedron have?

c. How many faces does the polyhedron have?

Problem 3:

a. Can a polyhedron have three vertices? Why or why not?
\qquad
b. What is the smallest number of vertices that a polyhedron can have?
\qquad
c. What is the smallest number of edges a polyhedron can have? Why is it that number and not another?
\qquad
d. What is the smallest number of faces a polyhedron can have?

Red Chilli Pepper Problem

James thinks of a number such that the sum of one third of the number and one fourth of the number equals twenty one. What number does James think of?

Problem 4: Fill in the following table and use the space below to draw the shapes.

$\#$	Polyhedron	Vertices	Edges	Faces
1	Cube			
2	Triangular Prism			
3	5-Prism			
4	Pyramid			
5	Tetrahedron			
6	Octahedron			
7	"Tower"			
8	Cube with a Cut Corner			
9	(Optional) Your Own			

Cube
Triangular Prism
5-Prism

Problem 5: Which of the following nets can be folded into a cube? Circle the correct ones:

Problem 6: Pyramids

a. A pyramid is a type of polyhedra that has the following properties:
i. The base is a polygon
ii. All the vertices of the \qquad are connected with a special vertex called an apex.

iii. Circle the apex of the pyramid to the right.
b. How many vertices, edges, and faces does the pyramid in the diagram above have?
$i . \quad$ Vertices
ii. Edges
iii. \qquad Faces
c. What about a pyramid with 8 vertices? Draw the pyramid in the space below.
i. \qquad Edges
ii. \qquad Faces
d. What about a pyramid with 10 vertices? Draw the pyramid in the space below.
i. \qquad Edges
ii. \qquad Faces
e. What about a pyramid with F faces? (Hint: Think about how the number of edges relates to the number of vertices in the polygon base).
i. \qquad Edges
ii. \qquad Vertices
f. Is it possible for a pyramid to have 2021 vertices?
\qquad
g. Is it possible for a pyramid to have 2021 edges?

Something to Consider: We've found a neat relationship between faces, edges, and vertices for Pyramids. Does a similar relationship exist for all Polyhedra? How will this new relationship compare to the relationship we found for Pyramids? We'll explore these questions in the second part of this topic.

Challenge Questions

Question 1: Tyler had five friends at his birthday party. He gave his first friend one sixth of the birthday cake. The second kid got one fifth of what was left. The third friend got one fourth of the remains, and the fourth got one third of what was left after that. Finally, Tyler took a half of what was left of the cake for himself and gave the other half to his fifth friend. Is this a fair way to divide a cake between the friends? If not, who got the biggest part of the cake?

Question 2: Circle the following nets that can be folded into a pyramid:

Question 3: Recall that for a net of a cube, the letter \underline{B} denotes the bottom face of the cube, $\underline{\mathbf{L}}$ stands for left, $\underline{\mathbf{R}}$ stands for right, $\underline{\mathbf{T}}$ for top, $\underline{\mathbf{E}}$ for front, and the lower-case $\underline{\mathbf{r}}$ stands for rear. Complete labeling the following nets:

Question 4: An ant needs to find the shortest possible path from a lower corner of a cubic room to the opposite upper corner. The corners are shown as a green and blue dot on the picture below. The ant can crawl on the floors, walls, and ceiling of the room, but it cannot fly through the air. Draw at least three different shortest paths on the picture.

Use the net of the cube provided below. (Hint: also use the symmetries of the cube)

The ORMC Logo

Above is a picture of the ORMC logo.

1. What are some characteristics you notice about the shape within the logo?
a. What dimensional shape is it? \qquad

Looking at the picture in the center of the logo, an untrained eye may spot a large number of symmetries that make the picture intriguing. A trained eye will see eight 3-dimensional cubes forming faces of a 4-dimensional cube, also known as a hypercube and a tesseract.

Let's compare drawing a 3D cube and a 4D cube on a 2D sheet of paper. This shape in the lower-right corner below is the tesseract depicted in the logo.

Drawing a 3D cube

Drawing a 4D cube.

