CHINESE REMAINDER THEOREM

Intermediate 2-21 February 2021

Warm Up

Theorem 1. Suppose m and n are two different prime numbers, and c is an integer. If $m \mid c$ and $n \mid c$, then $m n \mid c$.

Problem 1. Give values of m, n and c where Theorem 1 can be applied.

Problem 2. Explain why Theorem 1 is true.

Problem 3. Suppose we picked two prime numbers 3 and 5 and decided to make a table expressing the integers from 0 to 15 in $\bmod 3$ and $\bmod 5$.

For example, to find out where 7 belongs on the table, we would first find what 7 is in $\bmod 3$ and $\bmod 5$.
As $7 \equiv 1 \bmod 3$ and $7 \equiv 2 \bmod 5$, we would put 7 in the row corresponding to $1 \bmod 3$ and the column corresponding to $2 \bmod 5$. This is shown in the table below.

Fill out the rest of the table with integers from 0 to 15 .

		$\bmod 5$					
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\bmod 3$	$\mathbf{1}$			7			
	$\mathbf{0}$						

Problem 4. Fill out the following tables. Can we make a table when we pick two integers that have a factor in common?

Problem 5. Notice that when we pick two prime numbers, m and n to create the table corresponding to $\bmod m$ and $\bmod n$, we can uniquely identify every number from 0 to $m \cdot n-1$ by using the row and column they represent.
For example, there is only one number in the integers from 0 to 15 that is congruent to $2 \bmod 3$ and $3 \bmod 5$. Using the table you filled out in Problem 3, find this number.

Problem 6. Using the table from Problem 4, find a number between 0 and 20 that gives a remainder of 5 when we divide by 7 and a remainder of 2 when we divide by 3.

Problem 7. Suppose Lev was trying to remember how many books he had brought to school with him. He knew that he had less than 12 books and that he would have 0 books remaining when he counted them by 2's and 4 books remaining when he counted them by 6's. Can we determine from the information above how many books he has?

Chinese Remainder Theorem

Problem 8. Suppose we pick two prime numbers, n_{1} and n_{2}. Prove that the system of equations

$$
\left\{\begin{array}{lll}
x & \equiv r_{1} & \bmod n_{1} \\
x & \equiv r_{2} & \bmod n_{2}
\end{array}\right.
$$

has a unique solution for values of $x \bmod n_{1} \cdot n_{2}$.

To prove the above, we must show that if we have two numbers x_{1} and x_{2} that both satisfy the system of equations, then $x_{1} \equiv x_{2} \bmod n_{1} \cdot n_{2}$.
(1) Suppose that x_{1} and x_{2} both satisfy the system of equations. This would mean that

$$
\left\{\begin{array}{lll}
x_{1} & \equiv & \bmod n_{1} \\
x_{1} \equiv & \bmod n_{2}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{lll}
x_{2} & \equiv & \bmod n_{1} \\
x_{2} & \equiv & \bmod n_{2}
\end{array}\right.
$$

(2) This implies that

$$
\left\{\begin{array}{lll}
x_{1} & \equiv x_{2} & \bmod n_{1} \\
x_{1} & \equiv x_{2} & \bmod n_{2}
\end{array}\right.
$$

because

$$
x_{1} \equiv \ldots \quad \bmod n_{1} \equiv x_{2} \quad \bmod n_{1}
$$

and

$$
x_{1} \equiv \ldots \quad \bmod n_{2} \equiv x_{2} \quad \bmod n_{2}
$$

(3) Thus

$$
\begin{cases}x_{1}-x_{2} \equiv & \bmod n_{1} \\ x_{1}-x_{2} \equiv & \bmod n_{2}\end{cases}
$$

which means that $n_{1} \mid\left(x_{1}-x_{2}\right)$ and $n_{2} \mid\left(x_{1}-x_{2}\right)$.
(4) From Theorem 1, we know that this implies that

$$
\ldots
$$

so

$$
x_{1}-x_{2} \equiv \ldots \quad \bmod n_{1} \cdot n_{2} .
$$

(5) Finally, by adding x_{2} to both sides of the equation, we obtain

$$
x_{1} \equiv \ldots \quad \bmod n_{1} \cdot n_{2} .
$$

Theorem 2. Chinese Remainder Theorem
Suppose we pick k prime numbers, $n_{1}, n_{2}, \ldots, n_{k}$. The system of equations

$$
\left\{\begin{array}{rll}
x & \equiv r_{1} & \bmod n_{1} \\
x & \equiv r_{2} & \bmod n_{2} \\
& \cdots & \\
x & \equiv r_{k} & \bmod n_{k}
\end{array}\right.
$$

has a unique solution for values of $x \bmod n_{1} \cdot n_{2} \cdot \ldots \cdot n_{k}$.
Problem 9. Consider the system of equations

$$
\left\{\begin{array}{lll}
x & \equiv 2 & \bmod 11 \\
x & \equiv 3 & \bmod 13 \\
x & \equiv 3 & \bmod 17
\end{array}\right.
$$

How many solutions between 0 and 2430 does the system of equations have?

Problem 10. True/False: The system of equations has exactly one solution.

$$
\left\{\begin{array}{lll}
x & \equiv 1 & \bmod 2 \\
x & \equiv 1 & \bmod 3 \\
x & \equiv 2 & \bmod 7
\end{array}\right.
$$

Justify your answer.

Problem 11. True/False: The system of equations has exactly one solution between 0 and $n_{1} \cdot n_{2} \cdot n_{3}-1$.

$$
\left\{\begin{array}{lll}
x & \equiv 1 & \bmod n_{1} \\
x & \equiv 1 & \bmod n_{2} \\
x & \equiv 2 & \bmod n_{3}
\end{array}\right.
$$

Justify your answer.

Finding Solutions for the Chinese Remainder Theorem

So far, we have shown that there is a unique solution to a Chinese Remainder Theorem problem, but we have not discussed how to obtain the solution.
Suppose we're given the following system of equations:

$$
\left\{\begin{array}{rll}
x & \equiv r_{1} & \bmod n_{1} \\
x & \equiv r_{2} & \bmod n_{2} \\
& \ldots & \\
x & \equiv r_{k} & \bmod n_{k}
\end{array}\right.
$$

Then the solution x has the form

$$
x=c_{1} r_{1}+c_{2} r_{2}+\ldots+c_{k} r_{k} \quad \bmod n_{1} \cdot n_{2} \cdot \ldots \cdot n_{k}
$$

where

$$
\begin{aligned}
& c_{i} \equiv 1 \quad \bmod n_{i} \\
& c_{i} \equiv 0 \quad \bmod n_{j} \quad(i \neq j)
\end{aligned}
$$

Problem 12. Find the least positive integer x where

$$
\left\{\begin{array}{lll}
x & \equiv 1 & \bmod 7 \\
x & \equiv 7 & \bmod 11
\end{array}\right.
$$

(1) x must have the form:

$$
x=c_{1} \cdot 1+c_{2} \cdot \quad \bmod 7 \cdot 11
$$

(2) To find c_{1}, we must find a number so that

$$
\begin{aligned}
& c_{1} \equiv 1 \bmod 7 \\
& c_{1} \equiv 0 \bmod 11 . \\
& c_{1}= \\
&
\end{aligned}
$$

(3) To find c_{2}, we must find a number so that

$$
c_{2}=
$$

(4) This gives $x=$ \qquad .

Problem 13. A band of 7 pirates stole a sack of gold coins. When they tried to divide the fortune into equal portions, 2 coins remained. In the ensuing brawl over who should get the extra coins, two pirates were killed. The wealth was redistributed, but this time, and equal division left 3 coins. Again an argument developed in which two more pirates were killed. But now the total fortune was evenly distributed among the survivors. What was the least number of coins that could have been stolen?
Write a system of equations to represent the question above and solve it using the algorithm we learned.

Problem 14. Solve the system

$$
\left\{\begin{array}{lll}
x & \equiv 2 & \bmod 3 \\
x & \equiv 3 & \bmod 5 \\
x & \equiv 2 & \bmod 7
\end{array}\right.
$$

Problem 15. Explain why our algorithm for finding solutions to the Chinese Remainder Theorem works. If x has the form

$$
x=c_{1} r_{1}+c_{2} r_{2}+\ldots+c_{k} r_{k} \quad \bmod n_{1} \cdot n_{2} \cdot \ldots \cdot n_{k}
$$

why must

$$
c_{i} \equiv 1 \quad \bmod n_{i}
$$

and

$$
c_{i} \equiv 0 \quad \bmod n_{j} \quad(i \neq j) ?
$$

Two numbers are coprime if their greatest common denominator is 1 .
So far, we have shown that the Chinese Remainder Theorem applies to system of equations moduli prime numbers. However, it can be extended to moduli which are coprime to each other.

Problem 16. Solve the system

$$
\left\{\begin{array}{lll}
x & \equiv 1 & \bmod 4 \\
x & \equiv 3 & \bmod 5 \\
x & \equiv 2 & \bmod 7
\end{array}\right.
$$

Problem 17. Based on your understanding of the Chinese Remainder Theorem, explain why the Chinese Remainder Theorem can be extended to moduli which are coprime to each other.

Problem 18. Comets 2P/Encke, 4P/Faye and 8P/Tuttle have orbital periods of 3 years, 8 years and 13 years respectively. The last perihelions (the point in the orbit which is closest to the sun) of each of these comets were in 2017, 2014 and 2008 respectively. What is the next year in which all three of these comets will achieve perihelions in the same year?

Problem 19. What are the last two digits of 49^{19} ?
Hint: We are looking for x such that $x \equiv 49^{19} \bmod 100$.
Furthermore, $100=25 \cdot 4$ and $\operatorname{gcd}(25,4)=1$.

