Problem 1. (Textbook example) Let \(p \) be a prime number, and let \(a \not\equiv 0 \pmod{p} \) be an integer.

(a) Let \(b, c \) be integers. Show that if \(ab \equiv ac \pmod{p} \), then \(b \equiv c \pmod{p} \).

(b) Show that there exists an integer \(b \) such that \(ab \equiv 1 \pmod{p} \). Moreover, show that the residue class of \(b \) is unique. \textit{Hint: Assume towards a contradiction that \(b \) does not exist, and use part (a) together with the Pigeonhole Principle.}

Problem 2. (Textbook example – Fermat’s Little Theorem) Let \(p \) be a prime number, and let \(a \not\equiv 0 \pmod{p} \) be an integer. Show that \(a^p \equiv a \pmod{p} \). \textit{Hint: Apply part (a) of the previous exercise to show that the numbers \(a \cdot 1, a \cdot 2, \ldots, a \cdot (p-1) \) are all distinct.}

Problem 3. (Textbook example)

(a) Show that if \(7 \mid a^2 + b^2 \) for two integers \(a, b \), then in fact \(7 \mid a \) and \(7 \mid b \).

(b) Solve the equation \(a^2 + b^2 = 7c^2 \) for all integers \(a, b, c \).

[More general case: \(p \equiv 3 \pmod{4} \)]

Problem 4. Let \(p \) be a prime other than 2 and 3. Show that \(2^{p-2} + 3^{p-2} + 6^{p-2} \equiv 1 \pmod{p} \).

Problem 5. Let \(p \) be an odd prime number.

(a) Show that there is at least one residue class \(\bar{a} \pmod{p} \) that is not a perfect square (that is, there are no integers \(b \) such that \(b^2 \equiv a \pmod{p} \)).

(b) Show that there are exactly \(\frac{p-1}{2} \) such residue classes \(\bar{a} \). \textit{Note: perfect squares mod \(p \) are called the quadratic residues.}

Problem 6.

(a) Find the last digit of \(3^{2021} \).

(b) Find the residue modulo 70 of \(3^{2021} \).

Problem 7.

(a) Let \(p \) be a prime number, \(a \not\equiv 0 \pmod{p} \), and let \(n \) be the smallest positive integer such that \(p \mid a^n - 1 \). If \(m \) is another positive integer, show that \(p \mid a^m - 1 \) if and only if \(n \mid m \).

(b) Show that in (a), we have \(n \mid p-1 \). \textit{Note: \(n \) is called the (multiplicative) order of \(a \pmod{p} \).}

(c) Let \(k \) be a positive integer. Find all prime divisors \(p \) of \(2^{2^k} - 1 \) of the form \(p \equiv 3 \pmod{4} \). \textit{Challenge: Can you find two (significantly different) solutions?}

Problem 8. Show that the equation

\[2^{2021} + (p-2)^{2021} = 3^n \]

has no solutions where \(n \) is a positive integer and \(p \) is a prime.
Homework

Problem 1. Solve the equation $a^2 + 2b^2 = 5c^2$ for all integers a, b, c.

Problem 2. Find the last digit of $2^{2^{2021}}$.