Multiplying Negative Numbers

UCLA Olga Radko Math Circle Beginners 2 1/17/2021

Warm Up

An elevator takes 7 seconds to go from the first floor to the third floor. How long will it take to go from the first to the ninth floor?

We're all familiar with *multiplying two positive numbers*. Let's do a couple of examples.

Problem 1: Solve the following.

- a. 4 x 2 =
- b. 3 x 3 =
- c. 10 x 5 =

When multiplying two positive numbers, will your answer be <u>negative</u> or <u>positive</u>?

What if we were multiplying one positive and one negative number?

For example, what is $4 \times (-2)$? To understand what the answer would be, we're going to approach this in three ways:

Problem 2: What is 4 x (-2)?

- a. What is 4 x 0 = _____
- b. What is 2 + -2 = _____ (Use a number line, if necessary)
- c. Since we know that 2 + -2 =_____, let's replace the 0 in 4 x 0 with the following:

- i. 4 x 0 = _____
- ii. 4 x (____ + ____) = _____
- d. Now, if we distribute the 4, what do we get?
 - i. (4 x ____) + (4 x ____) = _____
- e. What is 4 x 2? _____
- f. Let's replace 4x2 with what we found in part (e).
 - i. (____) + (4 x ___) = _____
- g. What does this tell you about 4 x -2?
 - i. 4 x -2 = _____

When multiplying **one positive and one negative number**, will your answer be <u>negative</u> or <u>positive</u>?

<u>Problem 3</u>: Also, remember that *multiplication* is *repeated addition*. Let's use this idea to see what happens when we multiply **one negative and one positive number**.

- a. Expand the following multiplication problems in terms of addition.
 - i. 4 x 2 = ____ + ___ =
 - ii. 3 x 3 = ____ + ___ =
 - iii. (-3) x 3 = ____ + ___ =
 - iv. (-10) x 4 = ____ + ____ + ____ =

When multiplying **one negative and one positive number**, will your answer be <u>negative</u> or <u>positive</u>?

Red Chilli Pepper Problem

A group of 15 children gathered 100 mushrooms. Prove that at least two of them must have gathered the same number of mushrooms.

Problem 4: What if **both** of our numbers **were negative**? We'll use a similar approach in *Problem 2*. Suppose we are trying to find what **(-4) x (-2)** equals.

- h. What is -4 x 0 = _____
- i. What is 2 + -2 = _____ (Use a number line, if necessary)
- j. Since we know that 2 + -2 =____, let's replace the 0 in -4×0 with the following:
 - i. -4 x 0 = _____
 - ii. -4 x (____ + ____) = _____
- k. Now, if we distribute the -4, what do we get?
 - i. (-4 x ____) + (-4 x ____) = _____
- I. What is -4 x 2?
- m. Let's replace -4x2 with what we found for part (I).
 - i. (____) + (-4 x ___) = ____

n. What does this tell you about -4 x -2?

i. -4 x -2 = _____

When multiplying **two negative numbers**, will your answer be <u>negative</u> or <u>positive</u>?

Problem 5: We can also think of multiplication by negative numbers as a direction switch.

- a. A number tells us two things:
 - i. The distance from _____ on the number line

ii. The _____ in which to travel this distance.

- b. Then multiplying a number by -1 doesn't change the _____, but flips the _____, but flips the
- c. Using the number line above, let's calculate:
 - i. (-1) x 4 = _____
 - ii. (-1) x (-4) = _____
- d. Using this idea, (-4) x (-2) = (-1) x ____ x (-1) x ____ = (___) x (___) x 4 x 2 = 8

i. What happens to the direction when we multiply (-1) x (-1)?

Problem 6: Compute:

- a. 4 x 2 x (-3) =
- b. (-5) x 4 x (-5) =

- c. (-3) x (-8) x (-2) =
- d. (-2) x (-3) x (-4) x (-5) =
- e. What happens when you multiply 3 negative numbers together?
- f. How about 4 negative numbers?
- g. Do you see a pattern? If yes, please describe and explain.