Lesson 5: Quadratic Equations IV

Konstantin Miagkov

Problem 0.

Let $f(x) = ax^2 + bx + c$ be a quadratic equation with a > 0. Show that f achieves its unique minimal value at -b/(2a). In other words, show that for any $x \neq -b/(2a)$ we have

$$f(x) > f\left(\frac{-b}{2a}\right)$$

Show that if a < 0, then similarly f achieves its unique maximal value at -b/(2a).

Problem 1.

Show that the equation $x^2 + px - 1$ has two distinct real roots for all values of p.

Problem 2.

a) Find a quadratic equation with roots $\sqrt{2}$ and $-\sqrt{7}$. Is it unique?

b) Find a quadratic equation with integer coefficients and a root $4 - \sqrt{7}$.

Problem 3.

a) Two real roots of the equation $ax^2 + bx + c = 0$ have difference 2020. What is the discriminant of this equation if a = 1?

b) Prove that the equation $ax^2 + 2bx + 4c$ has two roots.

c) What is the difference between them?

Problem 4.

Is it true that if b > a + c > 0, then the quadratic equation $ax^2 + bx + c = 0$ has two distinct real roots?

Hint: Look at f(-1) and f(1).

Problem 5.

All three coefficients of a quadratic equation are odd integers. Show that it cannot have a root of the form 1/n, where n is an integer.