Lesson 5: Quadratic Equations IV

Konstantin Miagkov

Problem 0.

Let $f(x)=a x^{2}+b x+c$ be a quadratic equation with $a>0$.
Show that f achieves its unique minimal value at $-b /(2 a)$. In other words, show that for any $x \neq-b /(2 a)$ we have

$$
f(x)>f\left(\frac{-b}{2 a}\right)
$$

Show that if $a<0$, then similarly f achieves its unique maximal value at $-b /(2 a)$.

Problem 1.

Show that the equation $x^{2}+p x-1$ has two distinct real roots for all values of p.

Problem 2.

a) Find a quadratic equation with roots $\sqrt{2}$ and $-\sqrt{7}$. Is it unique?
b) Find a quadratic equation with integer coefficients and a root $4-\sqrt{7}$.

Problem 3.

a) Two real roots of the equation $a x^{2}+b x+c=0$ have difference 2020. What is the discriminant of this equation if $a=1$?
b) Prove that the equation $a x^{2}+2 b x+4 c$ has two roots.
c) What is the difference between them?

Problem 4.

Is it true that if $b>a+c>0$, then the quadratic equation $a x^{2}+b x+c=0$ has two distinct real roots?

Hint: Look at $f(-1)$ and $f(1)$.

Problem 5.

All three coefficients of a quadratic equation are odd integers. Show that it cannot have a root of the form $1 / n$, where n is an integer.

