Lesson 5: Quadratic Equations IV

Konstantin Miagkov

Problem 0.
Let \(f(x) = ax^2 + bx + c \) be a quadratic equation with \(a > 0 \).
Show that \(f \) achieves its unique minimal value at \(-b/(2a) \). In other words, show that for any \(x \neq -b/(2a) \) we have
\[
f(x) > f\left(\frac{-b}{2a}\right)
\]
Show that if \(a < 0 \), then similarly \(f \) achieves its unique maximal value at \(-b/(2a) \).

Problem 1.
Show that the equation \(x^2 + px - 1 \) has two distinct real roots for all values of \(p \).

Problem 2.
a) Find a quadratic equation with roots \(\sqrt{2} \) and \(-\sqrt{7} \). Is it unique?
b) Find a quadratic equation with integer coefficients and a root \(4 - \sqrt{7} \).

Problem 3.
a) Two real roots of the equation \(ax^2 + bx + c = 0 \) have difference 2020. What is the discriminant of this equation if \(a = 1 \)?
b) Prove that the equation \(ax^2 + 2bx + 4c \) has two roots.
c) What is the difference between them?

Problem 4.
Is it true that if \(b > a + c > 0 \), then the quadratic equation \(ax^2 + bx + c = 0 \) has two distinct real roots?

\[\text{Hint: Look at } f(-1) \text{ and } f(1). \]

Problem 5.
All three coefficients of a quadratic equation are odd integers. Show that it cannot have a root of the form \(1/n \), where \(n \) is an integer.