Lesson 6: Functions and Quadratic Equations

Konstantin Miagkov

Definition 1.

A function from set X to set Y is a rule that for each element $x \in X$ determines an element from the set Y, usually denoted $f(x)$.

Definition 2.

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be functions. We write $f>g(f \geq g)$ if for every $x \in \mathbb{R}: f(x)>$ $g(x)(f(x) \geq g(x))$.

Problem 1.

Determine if one (or none) of $f \geq g, f \leq g$ holds:
a) $f(x)=2 x+3, g(x)=2 x+1$
b) $f(x)=2 x^{2}, g(x)=3 x^{2}$
c) $f(x)=x+4, g(x)=x^{2}$
d) $f(x)=2 x+1, g(x)=-x^{2}$

Problem 2.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called even if $f(x)=f(-x)$ for all $x \in \mathbb{R}$. Similarly, a function is called odd if $f(x)=-f(-x)$ for all x.
a) Find which of the following functions are odd, even or neither: $x \cdot|x| ;|x+1|-|x-1|$; $|x+1|+|x-1| ; 3 x-x^{2}$.
b) Show that any function from \mathbb{R} to \mathbb{R} can be uniquely written as a sum of an even and an odd function.

Problem 3.

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(2 x+1)=4 x^{2}+14 x+7$.

Problem 4.

Five integers are written on the board - three coefficients of a quadratic equation and two roots in arbitrary order. After one of the numbers is erased, the numbers 2, 3, 4, - 5 are left. What number was erased?

Problem 5.

Let $A B C D$ be a quadrilateral such that there exists a circle tangent to all of its four sides. Such a quadrilateral is called circumscribed. Show that $A B+C D=A D+B C$.

