Lesson 6: Functions and Quadratic Equations

Konstantin Miagkov

Definition 1.

A function from set X to set Y is a rule that for each element $x \in X$ determines an element from the set Y, usually denoted f(x).

Definition 2.

Let $f, g : \mathbb{R} \to \mathbb{R}$ be functions. We write f > g $(f \ge g)$ if for every $x \in \mathbb{R}$: f(x) > g(x) $(f(x) \ge g(x))$.

Problem 1.

Determine if one (or none) of $f \ge g$, $f \le g$ holds: **a)** f(x) = 2x + 3, g(x) = 2x + 1 **b)** $f(x) = 2x^2$, $g(x) = 3x^2$ **c)** f(x) = x + 4, $g(x) = x^2$ **d)** f(x) = 2x + 1, $g(x) = -x^2$

Problem 2.

A function $f : \mathbb{R} \to \mathbb{R}$ is called *even* if f(x) = f(-x) for all $x \in \mathbb{R}$. Similarly, a function is called *odd* if f(x) = -f(-x) for all x.

a) Find which of the following functions are odd, even or neither: $x \cdot |x|$; |x+1| - |x-1|; |x+1| + |x-1|; $3x - x^2$.

b) Show that any function from \mathbb{R} to \mathbb{R} can be uniquely written as a sum of an even and an odd function.

Problem 3.

Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(2x+1) = 4x^2 + 14x + 7$.

Problem 4.

Five integers are written on the board – three coefficients of a quadratic equation and two roots in arbitrary order. After one of the numbers is erased, the numbers 2, 3, 4, -5 are left. What number was erased?

Problem 5.

Let ABCD be a quadrilateral such that there exists a circle tangent to all of its four sides. Such a quadrilateral is called *circumscribed*. Show that AB + CD = AD + BC.