< Example 2.21 (USAMO 2009/1). Given circles w; and w, intersecting at points X and

Y, let £, be a line through the center of w; intersecting w, at points P and Q and let ¢, be a
line through the center of w, intersecting w; at points R and S. Prove that if P, Q, R, and
S lie on a circle then the center of this circle lies on line XY.
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Figure 2.7B. An unnoticed special case.



Problem 2.28 (JMO 2012/1). Given a triangle ABC, let P and Q be points on segments
AB and AC, respectively, such that AP = AQ. Let S and R be distinct points on segment

BC such that S lies between B and R, /BPS = /PRS, and ZCOR = ZQSR. Prove
that P, Q, R, S are concyclic. Hints: 435 601 537 122
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Problem 2.31 (IMO 1995/1). Let A, B, C, D be four distinct points on a line, in that order.
The circles with diameters AC and BD intersect at X and Y. The line XY meets BC at

Z. Let P be a point on the line XY other than Z. The line C P intersects the circle with
diameter AC at C and M, and the line B P intersects the circle with diameter BD at B and
N. Prove that the lines AM, DN, XY ar¢ concurrent. Hints: 49 159 134
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