Oleg Gleizer oleg1140@gmail.com

Warm-up

Problem 1 Can a power of two (a number of the form 2^n) have all the decimal digits 0, 1, ..., 9 the same number of times?

Problem 2 Solve the following cryptarithm.

$$I^N = DIA$$

Parallelograms

Problem 3 Using a compass and a ruler, draw an angle congruent to the given angle α and having the given ray as its side.

Recall the following.

Proposition 1 If two distinct straight lines in the Euclidean plane form the angles of equal size with a third straight line in the plane, then they are parallel.

Problem 4 Using a compass and a ruler, draw a straight line parallel to the given one and passing through the given point.

•

Definition 1 A parallelogram in the Euclidean plane is a quadrilateral that has two pairs of parallel sides.

Proposition 2 If the straight lines a and b are parallel, then the angles α , β , γ , and δ they form with the straight line c on the picture below are all congruent to one another.

Recall the following theorem from the Junior Circle April 15, 2012 handout.^1

Theorem 1 Two triangles in the Euclidean plane are congruent if either of the following holds.

• Their side lengths are pairwise equal.

$$|a| = |a'|, |b| = |b'|, |c| = |c'|$$

• Each of the triangles has an angle congruent to an angle of the other triangle and the lengths of the sides adjacent to the congruent angles are pairwise equal.

$$\alpha \cong \alpha', \quad |b| = |b'|, \quad |c| = |c'|$$

¹ http://www.math.ucla.edu/~radko/circles/lib/data/Handout-345-431.pdf

• The triangles have one side of equal length each, and the adjacent angles are pairwise congruent.

$$|c| = |c'|, \quad \alpha \cong \alpha', \quad \beta \cong \beta'$$

To prove the following theorem, we will use Proposition 2 and Theorem 1 as tools. We are also going to use the Claim - Reason charts studied in the April 28, 2013 Junior Circle handout.²

Theorem 2 • Opposite sides of a parallelogram have equal length.

- Opposite angles of a parallelogram are congruent.
- Diagonals of a parallelogram split each other in halves.

The proof of the first statement of Theorem 2 is given below. You will be asked prove the remaining two parts in the subsequent problems.

Consider the following picture.

²http://www.math.ucla.edu/~radko/circles/lib/data/Handout-517-630.pdf

Claim	Reason
AC is the common side of the triangles ABC and ACD .	Given.
$(AD) \parallel (BC)$	Definition of parallelogram.
$\angle CAD \cong \angle ACB$	Proposition 2.
$(AB) \parallel (CD)$	Definition of parallelogram.
$\angle ACD \cong \angle BAC$	Proposition 2.
$\triangle ABC \cong \triangle ACD$	Third part of Theorem 1: $ AC = AC ,$ $\angle CAD \cong \angle ACB,$ $\angle ACD \cong \angle BAC$
AB = CD , AD = BC	$\triangle ABC \cong \triangle ACD$

Q.E.D.

Problem 5 Use the Claim-Reason chart to prove the second statement of Theorem 2.

Problem 6 To prove the last statement of Theorem 2, consider the triangles DOC and AOB on the following picture.

Then use the Claim-Reason chart.

Proposition 3 A quad having pairs of opposite sides of equal length is a parallelogram.

The proof of this important proposition is split into the following two problems.

Problem 7 For the quad ABCD below, it is given that |AD| = |BC| and |AB| = |CD|. Use the Claim - Reason chart to prove that $\angle CAD \cong \angle ACB$ and $\angle ACD \cong \angle BAC$.

Problem 8 Use Problem 7 and Proposition 1 to finish the proof of Proposition 3. Fill out the corresponding Claim - Reason chart.

Definition 2

- A rectangle is a quadrilateral with all four angles congruent to one another.
- A square is a rectangle with all four sides of equal length.
- A rhombus is a quad with all four sides of equal length.

A rhombus is sometimes called a *diamond*. A rectangle is occasionally called an *oblong*, the word generally meaning something that is longer than it is wide. Note that a square is a rectangle and a rhombus at the same time.

Problem 9 Prove that a rectangle is a parallelogram. Use the Claim-Reason chart.

Problem 10 Prove that a rhombus is a parallelogram. Use the Claim-Reason chart.

Problem 11 Prove that diagonals of a rhombus intersect at the right angle. Use the Claim - Reason chart.

Problen	n 12	Use a	comp	ass and	d a	ruler	to	draw	the	right	tri-
angle wit	th the	follow	ving le	gs in ti	he s	space	bela	pw.			

a b

Definition 3 Two straight lines intersecting at the right angle are called orthogonal, or perpendicular, to each other.

For example, the diagonals of a rhombus are always orthogonal.

Theorem 3 In the Euclidean plane, the shortest path from a point to a straight line is the perpendicular from the point to the line.

Problem 13 Let $(AO) \perp l$ on the picture above. Let C be any other point on l. With the help of the Pythagoras' Theorem, prove that |AC| > |AO|. Use the Claim - Reason chart.

Theorem 4 For any point and straight line in the Euclidean plane, there exists a unique straight line passing through the point orthogonal to the original line.

Problem 14 Prove Theorem 4.

Definition 4 A straight line is called tangent to a circumference, if they intersect at one point.

Theorem 5 A line tangent to a circumference is orthogonal to the radius drawn from their common point to the circumference center.

Problem 15 Prove Theorem 5.

Tired of geometry?

Problem 16 Prove the following polynomial identity.

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 \tag{1}$$

Problem 17 Prove that in any base b > 3, the number 1331_b is a perfect cube.

Problem 18 Without using a calculator, find the cubic root of the number $16c8_{16}$. Hint: formula 1 may help.

Definition 5 Two integers are called co-prime, if their greatest common divisor equals one.

For example, a prime number is co-prime with any other integer that is not a power of the prime.

Problem 19 Without using a calculator, decide whether the decimal numbers 11 and 9, 182, 371 are co-prime. Explain your decision.

Problem 20 One chooses n + 1 numbers between 1 and 2n. Show that she/he has selected two co-prime numbers.

Homework

Please refresh your knowledge of the geometry of masses (Junior Circle April 7, 2013 handout, starting from page 5 3) if you have studied it before. If not, try to learn as much as you can. Then solve the following.

Problem 21 One-pound weights are placed in the vertices of a parallelogram. Find its center of mass.

³http://www.math.ucla.edu/~radko/circles/lib/data/Handout-510-612.pdf