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Warm-up

Problem 1 Can a power of two (a number of the form 2n) have
all the decimal digits 0, 1, . . . , 9 the same number of times?

Problem 2 Solve the following cryptarithm.

IN = DIA
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Parallelograms

Problem 3 Using a compass and a ruler, draw an angle con-
gruent to the given angle α and having the given ray as its side.

α

Recall the following.

Proposition 1 If two distinct straight lines in the Euclidean
plane form the angles of equal size with a third straight line in
the plane, then they are parallel.

α

α

b

a

c
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Problem 4 Using a compass and a ruler, draw a straight line
parallel to the given one and passing through the given point.

Definition 1 A parallelogram in the Euclidean plane is a quadri-
lateral that has two pairs of parallel sides.

parallelogram
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Proposition 2 If the straight lines a and b are parallel, then
the angles α, β, γ, and δ they form with the straight line c on
the picture below are all congruent to one another.

a

b

c

α

β

γ

δ

Recall the following theorem from the Junior Circle April 15,
2012 handout.1

Theorem 1 Two triangles in the Euclidean plane are congru-
ent if either of the following holds.

• Their side lengths are pairwise equal.

|a| = |a′|, |b| = |b′|, |c| = |c′|

• Each of the triangles has an angle congruent to an angle
of the other triangle and the lengths of the sides adjacent to the
congruent angles are pairwise equal.

α ∼= α′, |b| = |b′|, |c| = |c′|
1 http://www.math.ucla.edu/~radko/circles/lib/data/Handout-345-431.pdf
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• The triangles have one side of equal length each, and the
adjacent angles are pairwise congruent.

|c| = |c′|, α ∼= α′, β ∼= β′

To prove the following theorem, we will use Proposition 2 and
Theorem 1 as tools. We are also going to use the Claim - Reason
charts studied in the April 28, 2013 Junior Circle handout.2

Theorem 2 • Opposite sides of a parallelogram have equal
length.

• Opposite angles of a parallelogram are congruent.

• Diagonals of a parallelogram split each other in halves.

The proof of the first statement of Theorem 2 is given below.
You will be asked prove the remaining two parts in the subse-
quent problems.

Consider the following picture.

A B

CD

2http://www.math.ucla.edu/~radko/circles/lib/data/Handout-517-630.pdf
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Claim Reason

AC is the common side Given.
of the triangles ABC and ACD.

(AD) ‖ (BC) Definition of parallelogram.

∠CAD ∼= ∠ACB Proposition 2.

(AB) ‖ (CD) Definition of parallelogram.

∠ACD ∼= ∠BAC Proposition 2.

4ABC ∼= 4ACD Third part of Theorem 1:
|AC| = |AC|,
∠CAD ∼= ∠ACB,
∠ACD ∼= ∠BAC

|AB| = |CD|, |AD| = |BC| 4ABC ∼= 4ACD

Q.E.D.
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Problem 5 Use the Claim-Reason chart to prove the second
statement of Theorem 2.

Problem 6 To prove the last statement of Theorem 2, consider
the triangles DOC and AOB on the following picture.

A B

CD

O
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Then use the Claim-Reason chart.
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Proposition 3 A quad having pairs of opposite sides of equal
length is a parallelogram.

The proof of this important proposition is split into the fol-
lowing two problems.

Problem 7 For the quad ABCD below, it is given that |AD| =
|BC| and |AB| = |CD|. Use the Claim - Reason chart to prove
that ∠CAD ∼= ∠ACB and ∠ACD ∼= ∠BAC.

A B

CD
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Problem 8 Use Problem 7 and Proposition 1 to finish the proof
of Proposition 3. Fill out the corresponding Claim - Reason
chart.
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Definition 2

• A rectangle is a quadrilateral with all four angles congru-
ent to one another.

• A square is a rectangle with all four sides of equal length.

• A rhombus is a quad with all four sides of equal length.

a rectangle a square a rhombus

A rhombus is sometimes called a diamond. A rectangle is oc-
casionally called an oblong, the word generally meaning some-
thing that is longer than it is wide. Note that a square is a
rectangle and a rhombus at the same time.
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Problem 9 Prove that a rectangle is a parallelogram. Use the
Claim-Reason chart.
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Problem 10 Prove that a rhombus is a parallelogram. Use the
Claim-Reason chart.

13



Problem 11 Prove that diagonals of a rhombus intersect at the
right angle. Use the Claim - Reason chart.
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Problem 12 Use a compass and a ruler to draw the right tri-
angle with the following legs in the space below.

a

b
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Definition 3 Two straight lines intersecting at the right angle
are called orthogonal, or perpendicular, to each other.

For example, the diagonals of a rhombus are always orthog-
onal.

Theorem 3 In the Euclidean plane, the shortest path from a
point to a straight line is the perpendicular from the point to the
line.

A

lCO

Problem 13 Let (AO) ⊥ l on the picture above. Let C be any
other point on l. With the help of the Pythagoras’ Theorem,
prove that |AC| > |AO|. Use the Claim - Reason chart.
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Theorem 4 For any point and straight line in the Euclidean
plane, there exists a unique straight line passing through the
point orthogonal to the original line.

Problem 14 Prove Theorem 4.
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Definition 4 A straight line is called tangent to a circumfer-
ence, if they intersect at one point.

Theorem 5 A line tangent to a circumference is orthogonal to
the radius drawn from their common point to the circumference
center.

Problem 15 Prove Theorem 5.
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Tired of geometry?

Problem 16 Prove the following polynomial identity.

(x+ y)3 = x3 + 3x2y + 3xy2 + y3 (1)

Problem 17 Prove that in any base b > 3, the number 1331b is
a perfect cube.
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Problem 18 Without using a calculator, find the cubic root of
the number 16c816. Hint: formula 1 may help.

Definition 5 Two integers are called co-prime, if their greatest
common divisor equals one.

For example, a prime number is co-prime with any other in-
teger that is not a power of the prime.

Problem 19 Without using a calculator, decide whether the
decimal numbers 11 and 9, 182, 371 are co-prime. Explain your
decision.
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Problem 20 One chooses n + 1 numbers between 1 and 2n.
Show that she/he has selected two co-prime numbers.

Homework

Please refresh your knowledge of the geometry of masses
(Junior Circle April 7, 2013 handout, starting from page 5 3) if
you have studied it before. If not, try to learn as much as you
can. Then solve the following.

Problem 21 One-pound weights are placed in the vertices
of a parallelogram. Find its center of mass.

3http://www.math.ucla.edu/~radko/circles/lib/data/Handout-510-612.pdf
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