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Last week, we explored the limitations of polynomials as prime generating functions. This week, we
will try to define prime generating functions with recursive formulas.

Recursive Formulas that Are Basically No Help

Definition 1. Let a(n) = a(n − 1) + gcd(n, a(n − 1)) with a(1) = 7. The prime generating function in
question is g(n) = a(n)− a(n− 1) = gcd(n, a(n− 1)) for n ≥ 2.

Problem 1. (a) Compute a(1) through a(11).
(b) Compute g(2) through g(11).
(c) When g(n) is prime, make a conjecture about the relationship between a(n) and n?

We claim that g(n) is either 1 or prime. We will prove a specific result in Problem 2 that will allow us
to prove the claim in Problem 3.

Problem 2. Let n1 satisfy a(n1) = 3n1. Let n2 be the next input where g(n2) 6= 1. We will show that
g(n2) is prime and n2 satisfies a(n2) = 3n2.

(a) Let 1 ≤ i ≤ n2 − n1. Show that g(n1 + i) = gcd(n1 + i, 3n1 + i− 1).
(b) Use part (a) to show that g(n1 + i) divides 2n1 − 1 and 2i + 1.
(c) Let p denote the smallest prime divisor of 2n1 − 1. Since 2n1 − 1 is odd, p is odd. Prove that

n2 − n1 ≥ p−1
2 .

(d) Prove that n2 − n1 ≤ p−1
2 . Conclude that n2 − n1 = p−1

2 .

(e) Show that g(n1 + p−1
2 ) divides the prime p. Conclude that g(n2) = p.

(f) Show that a(n2) = 3n2.

Problem 3. Use Problem 2 to prove that g(n) is always either 1 or prime for a(1) = 7. (Hint: We need
to choose n1 satisfying a(n1) = 3n1. Then show that n2 satisfies the conditions to continue the process.)

Problem 4. Will this sequence contain all prime numbers eventually? If not, find a prime that is missing.

It is not yet known whether g generates all odd prime numbers.
There is another recursively-defined prime generating function that does produce all the prime numbers

in a predictable way. However, as we will see, the definition requires us to know the prime numbers ahead
of time.

Definition 2. Let f(n) = bf(n−1)c(f(n−1)−bf(n− 1)c+ 1). The sequence bf(n)c will enumerate the
primes. Let pn denote the nth prime number and Pn the product of the primes less than pn. We define
the initial condition as f(1) =

∑N
n=1

pn−1
Pn

for some integer N .

We will show that the choice of N determines how many primes the sequence enumerates. If you are
familiar with infinite series, taking f(1) =

∑∞
n=1

pn−1
Pn

will enumerate all the prime numbers in increasing
order.

Problem 5. Let f(1) be defined only by the first three terms in the sequence so f(1) = 2−1
1 + 3−1

2 + 5−1
2·3 =

8
3 . Find the value of bf(n)c for n = 1, 2, 3, . . .

Problem 6. Let f(1) be defined only by the first four terms in the sequence so f(1) = 2−1
1 + 3−1

2 + 5−1
2·3 +

7−1
2·3·5 = 43

15 . Find the value of bf(n)c for n = 1, 2, 3, . . .
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Problem 7. Let f(1) be defined now by the first five terms in the sequence so f(1) = 2−1
1 + 3−1

2 + 5−1
2·3 +

7−1
2·3·5 + 11−1

2·3·5·7 = 306
105 . Find the value of bf(n)c for n = 1, 2, 3, . . .

In order to show that this sequence works as predicted, we will need to introduce an important result
about the distribution of primes.

Theorem 1 (Bertrand’s Postulate). For each n > 1, there is a prime p such that n < p < 2n. In

particular, pi+1 < 2pi and pi+1 <
∏i

j=k pj for any 1 ≤ k ≤ i.

Problem 8. (a) Using induction, show f(n) = pn + (pn+1−1)−pn
pn

+
∑N

i=n+2
pi−1∏i−1
j=n pj

for 1 ≤ n ≤ N −1.

For the sake of simplicity, we assume that the sum of the fractions is less than 1. Thus bf(n)c = pn
for all 1 ≤ n ≤ N − 1. (Hint: You will need to apply Bertrand’s Postulate.)

(b) Show that f(N + i) = pN − 1 for all integers i ≥ 0.

Problem 9. Discuss an enormous limitation of f as a formula for finding prime numbers.

Problem 10. Discuss other limitations of recursive formulas in general.
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