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Exploring Manifolds

1 Metrics

Recall the definition of a metric:

Definition: A metric on a set X is a function d : X ×X → R with the following properties:

1. For any x, y ∈ X, d(x, y) ≥ 0, with d(x, y) = 0 ⇐⇒ x = y.

2. For any x, y ∈ X, d(x, y) = d(y, x).

3. (Triangle Inequality) For all x, y, z ∈ X, we have d(x, z) ≤ d(x, y) + d(y, z).

Problem 1.1: Why is the last property called the triangle inequality?

Problem 1.2: (Optional) Let X be a nonempty set, and define the discrete metric d : X × X → R
given by d(x, y) = 0 if x = y, and d(x, y) = 1 otherwise. Verify that the discrete metric is a metric on X.

Problem 1.3: What is the usual (Euclidean) notion of distance on the number line R? Write down
a formula for d(x, y), the distance between x, y ∈ R. Prove that d is a metric.

Problem 1.4:

a) What is the usual (Euclidean) notion of distance in Rn? Write down a formula for d(x, y), where x =
(x1, ..., xn) ∈ Rn and y = (y1, ..., yn) ∈ Rn.

b) (Optional Challenge) Show that the function d defined in part a is indeed a metric.

Problem 1.5: What metric should we put on the set of complex numbers, C? What about Cn?

Definition: A metric space (X, d) is a set X along with a metric d : X ×X → R.

Problem 1.6: Prove or disprove: Let (X, dX) be a metric space and suppose Y ⊂ X. Then Y can
be turned into a metric space as well, with some metric dY which is consistent with the metric dX (i.e. for
all a, b ∈ Y , dY (a, b) = dX(a, b)).

Problem 1.7: Show that the unit circle, S1 = {(a, b) ∈ R2 : a2 + b2 = 1}, and the unit sphere, S2 =
{(a, b, c) ∈ R2 : a2 + b2 + c2 = 1}, are metric spaces. In fact, show Sn := {(a1, ..., an) ∈ Rn :

∑n
i=1 a

2
i = 1} is

a metric space.

Definition: Let (X, d) be a metric space. An open ball centered at x ∈ X with radius r > 0 is the
set B(x, r) = {y ∈ X : d(x, y) < r}.

Problem 1.8:

a) In the metric space R with the Euclidean metric (see problem 1.3), draw the open ball B(0, 1). What
does the open ball B(x, r) look like in general?

b) In the metric space R2 with the Euclidean metric (see problem 1.4), draw the open ball B((0, 0), 1). What
does the open ball B((x, y), r) look like in general?

c) Show the open unit square (0, 1)× (0, 1) ⊂ R2 is a union of open balls.

Hint : Let (x, y) ∈ (0, 1) × (0, 1). Find a possible radius for a small open ball centered at (x, y) that
fits entirely inside the unit square.
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Definition: Let (X, dX) and (Y, dY ) be metric spaces. We say f : X → Y is continuous if for every y ∈ Y
and r > 0, we have the set {x ∈ X : f(x) ∈ B(y, r)} is the union of open balls in X.

Problem 1.9: Let f : R → R be the function f(x) = x2. Show that f(x) is continuous by showing
that for any open interval (a, b) ⊂ R, the set {x ∈ R : f(x) ∈ (a, b)} is either itself an open interval, or the
union of two open intervals.

Definition: We say two metric spaces (X, dX) and (Y, dY ) are homeomorphic we have a function f : X → Y
which is continuous, bijective, and whose inverse is also continuous.

Problem 1.10: Show C is homeomorphic to R2.
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2 Topological Manifolds

Now, we focus our attention to a special class of metric spaces.

Definition: A topological n-manifold (or n-manifold, or simply manifold) is a metric space (X, d) such
that for each x ∈ X, we have some open ball B(x, r) = {y ∈ X : d(y, x) < r} which is homeomorphic to Rn.
(It should be the same integer n for every point!) The dimension of the n-manifold X is simply the integer n.

Problem 2.1: You’ve probably seen some topological manifolds before. Argue why each of the following
are indeed topological manifolds.

a) Rn

b) C

c) Cn

d) The open interval (0, 1) ⊂ R

e) The open unit square (0, 1)× (0, 1) ⊂ R2

f) The unit circle {(a, b) ∈ R2 : a2 + b2 = 1}

g) The unit sphere {(a, b, c) ∈ R3 : a2 + b2 + c2 = 1}

Problem 2.2: Determine which of the following are manifolds (assigning each set the metric it inherits
from Rn or Cn as appropriate). For those that are, what is their dimension? For those that are not, why
not?

a) The closed unit square [0, 1]× [0, 1] ⊂ R2

b) The open unit disk {(a, b) ∈ R2 : a2 + b2 < 1}

c) The closed unit disk {(a, b) ∈ R2 : a2 + b2 ≤ 1}

d) The x-axis {(a, b) ∈ R2 : b = 0}

e) The x-axis and y-axis, i.e. the set {(a, b) ∈ R2 : a = 0 or b = 0}

f) The subset {z ∈ C : |z| = 1}

g) The subset {(a, b) ∈ C2 : a2 + b2 = 1}

h) The subset {(a, b) ∈ C2 : a2 + b2 = 0}

i) The subset Sn = {(a1, ..., an) ∈ Rn :
∑n

i=1 a
2
i = 1}

j) The set {(x, y, z) ∈ R3 : xz = 0 and yz = 0}
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3 Quotient Spaces

In this section, we discuss a useful way to describe more complicated spaces by means of ”gluing” parts of
a different space together.

3.1 Equivalence Relations

Recall an equivalence relation on a set X is a relation ∼ between points in X which satisfies

1. (Reflexivity) For any x ∈ X, x ∼ x.

2. (Symmetry) For any x, y ∈ X, if x ∼ y, then y ∼ x.

3. (Transitivity) For any x, y, z ∈ X, if x ∼ y and y ∼ z, then x ∼ z.

The equivalence class of an element x ∈ X, denoted [x], is the set of all elements in X related to it. That is,
[x] = {y ∈ X : x ∼ y}.

We define the set X/ ∼ to be the set of all equivalence classes under the equivalence relation ∼. That
is, X/ ∼ is the set {[a] : a ∈ X}.

Geometrically, we may visualize X/ ∼ as taking X and gluing together all equivalent points.

Problem 3.1: Let X = [0, 1] × [0, 1] be the unit square. For each of the following equivalence rela-
tions, draw a picture to illustrate which points should be glued together to get X/ ∼. What is the resulting
space look like?

a) (x, 0) ∼ (x, 1) for each x ∈ [0, 1].

b) (x, 0) ∼ (1− x, 1) for each x ∈ [0, 1].

c) (x, 0) ∼ (x, 1) for each x ∈ [0, 1], and (0, y) ∼ (1, y) for each y ∈ [0, 1].

d) (x, 0) ∼ (x, 1) for each x ∈ [0, 1], and (0, y) ∼ (1, 1− y) for each y ∈ [0, 1]

Problem 3.2: Explain how you might be able to create each of the above spaces using a square sheet of
paper and some glue. Actually, for one of them, you might need some special paper that can pass through
itself freely. Do you know which one that is? Do you recognize the space?

Problem 3.3: Which of the above spaces are manifolds? For each one, explain why or why not. (The rest
are actually manifolds with boundary. Unfortunately, we won’t think about those too much).
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3.2 Quotient by a subspace

There is a special case of the above construction. In this, we take a set X and a subset A ⊂ X, and set up
an equivalence as follows: all points in the subset A are considered equivalent. Instead of writing X/ ∼ as
above, we write X/A instead.

Geometrically, we visualize X/A as taking the space X and ”crushing” all of A to a single point (or gluing
all the points in A together).

Problem 3.4: Let X = S1 and let a, b ∈ X be two distinct points. Describe X/A, where A = {a, b}. Is it
a manifold? Why or why not?

Problem 3.5: Let X = [0, 1] and let A = {0, 1} ⊂ [0, 1]. Describe X/A. What familiar space is it
homeomorphic to? Is it a manifold?

Problem 3.6: Let X = [0, 1]× [0, 1] and A = {(x, y) ∈ [0, 1]× [0, 1] : x = 0, x = 1, y = 0, or y = 1}, i.e. the
boundary of the unit square X. Describe X/A. What familiar space is it homeomorphic to? Is it a manifold?

Hint : It may help to try constructing this with a piece of paper.
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Exploring Projective Space
In this section, we will construct the manifold RPn, which will be an extension of Rn known as real projective
space. We will think of various ways to visualize it.

4 Lines through R2

Problem 4.1:

a) Define ∼ on R2 by (a, b) ∼ (c, d) if and only if ad = bc. Is ∼ an equivalence relation?

b) Define ∼′ on R2 \ {(0, 0)} by (a, b) ∼′ (c, d) if and only if ad = bc. Is ∼′ an equivalence relation?

c) Define an equivalence relation ∼′′ on R2 \ {(0, 0)} with (a, b) ∼ (λa, λb) for each (a, b) ∈ R2 \ {(0, 0)} and
λ 6= 0. Show ∼′ and ∼′′ are the same relation.

d) What are the equivalence classes of the relation ∼′ (or equivalently, of ∼′′)?

Definition: Define RP1 as the space (R2 \ {0})/ ∼′′.

That probably isn’t the most enlightening definition, so let’s be more explicit:

RP1 consists of equivalence classes of points (a, b), where a, b are not both 0. The equivalence class of
(a, b) is denoted [a : b]. We write

RP1 = {[a : b] | a 6= 0 or b 6= 0}

Problem 4.2: Which points of R2 are in [2 : 3]? What about [0 : 2]? [7 : 0]? [0 : 0]?

Explicitly, we know
[a : b] = {(λa, λb) ∈ R2 : λ 6= 0}

Problem 4.3: Show [2 : 3] = [8 : 12].

Observe that lines in R2 can be classified in a nice way: by their slope!

Problem 4.4:

a) Show every element of RP1 except for one can be written uniquely as [1 : m], where m is the slope of the
corresponding line in R2.

b) Which line in R2 does the remaining element of RP1 correspond to?

c) Consider the lines [1 : m] as m goes to +∞. Which line do we approach?

d) Consider the lines [1 : m] as m goes to −∞. Which line do we approach?

e) (Open-ended) Is there a sensible ’slope’ we could give the line in part b?
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5 Visualization of RP1

With the previous problem in mind, we observe the following: the elements of RP1 correspond to elements
of R, except that RP1 has one extra point: a ”point at infinity”. This point somehow sits simultaneously at
+∞ and −∞.

Problem 5.1: Write down an injective function f : R → RP1 whose image consists of every point
except for [0 : 1]. Use this to explain why we might visualize RP1 \ {[0 : 1]} to look the same as R.

Problem 5.2: Now we attempt our first visualization of RP1.

a) Draw RP1 \ {[0 : 1]} as a number line. What does each point on the number line represent?

b) Where should we add [0 : 1] to complete our picture? Hint : See 4.4c− 4.4e.

c) What does RP1 look like? Hint : Compare with problem 3.5.

We’ll call this visualization of RP1 the ”number line with a point at infinity”.

Oddly, RP1 looks like S1. In a way, though, it’s actually closer to ”half” of our usual unit circle, as
the following problem shows.

Problem 5.3: In this problem, we try to visualize RP1 without leaving our starting space of R2 \ {(0, 0)},
which we already know how to visualize.

a) Since each element of RP1 corresponds to one line (through the origin) in R2, let’s pick a representative
element for each line. Show that any element of RP1 can be written as [a : b], where a2 + b2 = 1. Is this
representation unique?

b) Show that we can even write each element as [a : b] for a2 + b2 = 1 and a ≥ 0.

c) Show that there is one line (through the origin) in R2 with two representatives satisfying the conditions
in part b, but the rest of the lines have precisely one representative.

d) Conclude that RP1 may be visualized as a semicircle with its two endpoints glued together. What does
that space look like?

In this case, we come to the same conclusion: RP1 still looks like S1, but is different from at least some
perspective.

Problem 5.4: Show there is a surjective map f : S1 → RP1 such that every point in RP1 is mapped to by
precisely two points in S1. (We say S1 is a ”double cover” of RP1.)

We close with trying to understand what happens to lines not going through the origin in R2.

Problem 5.5: Let L be the line L = {(x, y) ∈ R2 : y = x+ 1} ⊂ R2.

a) The point (5, 6) ∈ L corresponds to [5 : 6] = [1 : 6/5] in RP1, which corresponds to the point 6/5 on our
number line with a point at infinity (see 5.2). Consider the sequence of points (1, 2), (2, 3), (3, 4), . . .∈ L.
Sketch the corresponding points in our number line.

b) Repeat this process for the points (−1, 0), (−2,−1), (−3,−2), . . .∈ L.

c) Where does (0, 1) ∈ L end up?

d) What’s the only point in RP1 we are missing? Why?
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6 Lines through R3

In a similar setup as before, we put an equivalence relation on R3 \ {(0, 0, 0)} via (a, b, c) ∼ (λa, λb, λc) for
all (a, b, c) ∈ R3 \ {(0, 0, 0)} and λ 6= 0. We denote the equivalence class of (a, b, c) as [a : b : c]. It consists
of nonzero points in the line in R3 going through the origin and (a, b, c). That is

[a : b : c] = {(λa, λb, λc) ∈ R3 : λ 6= 0}

Finally, we define
RP2 = {[a : b : c] | a 6= 0 or b 6= 0 or c 6= 0}

Problem 6.1:

a) Which points of R3 are in [1 : 2 : 3]? [1 : 0 : 0]?

b) Find another way to write [4 : 5 : 6]. That is, find a different representative element of that line.

Problem 6.2:

a) Show that every element of RP3 can be written as [a : b : c] with a2 + b2 + c2 = 1 and a ≥ 0.

b) Which points do not have a unique representative element satisfying the above properties?

c) Show the elements that do have a unique representative are in bijection with R2.

d) Show the elements that do not have a unique representative are in bijection with RP1.

e) Conclude RP2 can be thought of as R2 along with a copy of RP1. Just as we thought of RP1 as a number
line (R1) with an extra point, we will think of RP2 as the plane (R2) with many extra points.

For RP1, we decided it corresponded to a number line, with the extra element [0 : 1] placed simultaneously
at +∞ and −∞. Where do we put all of our extra points in the case of RP2?

Problem 6.3: The elements of the form [1 : a : b] ∈ RP2 can be visualized as the plane (with [1 : a : b]
corresponding to (a, b)). Here, we show [0 : 1 : λ] can be visualized as the point at infinity for the line
L = {(x, y) ∈ R2 : y = λx}, and that [0 : 0 : 1] is the point at infinity for the y-axis.

a) The elements [1 : x : 2x] ∈ RP2 correspond to points on the line y = 2x in our visualization. For x 6= 0,
we may rewrite this as [1 : x : 2x] = [ 1x : 1 : 2]. What would be a reasonable interpretation of [0 : 1 : 2]?

b) Generalize the above argument for the elements [1 : x : λx] ∈ RP2 (i.e. the line y = λx in our visualiza-
tion), as well as for the points [1 : 0 : y] ∈ RP2 (i.e. the y-axis in our visualization).

So, RP2 can be visualized (or even constructed) as follows:

1. Start with R2.

2. For each line through the origin, add a point at infinity. That is, add a single point that is simultane-
ously at the +∞ and −∞ ends of the line.

And voila! We have RP2. Yet, it’s still not super clear what it looks like. Is it ike S2? Note that S2 can be
constructed by the following process:

1. Start with R2.

2. Add a single point, which simultaneously sits at +∞ and −∞ ends of every line at the same time.
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So at least from the construction, RP2 is not S2. Yet, we have an analogous result as in 5.4.

Problem 6.4: Show there is a surjective map f : S2 → RP2 such that every point in RP2 is mapped to by
precisely two points in S2. (We say S2 is a double cover of RP2.)

As it turns out, S2 has no connected double covers, so if we accept this fact, we have RP2 and S2 are
not the same.

We once again close this section by trying to understand lines in R2 not going through the origin, this
time looking in RP2 instead.

Problem 6.5: Let L = {(x, y) ∈ R2 : y = x+ 1}.

a) Which elements of RP2 can be visualized as the points (x, x+ 1) in R2?

b) For x 6= 0, we have [1 : x : (x+ 1)] = [ 1x : 1 : 1 + 1
x ]. What would be a suitable ”point at infinity” for the

line L?

c) Repeat this process for y = x and y = x+ 2.

d) Show that any two parallel lines share the same point at infinity (in RP2).

7 RPn is a manifold

As it turns out, our constructions of RP1 and RP2 are manifolds. We partially prove it below.

Problem 7.1: Show there is an injective funtion f : RP1 → R2. (You do not need to write this function
out explicitly, though you may).

In this way, RP1 inherits a metric.

Problem 7.2: (Challenge) Show there is an injective function f : RP2 → R4. Hint : Start with g : R3 → R4

given by g(x, y, z) = (xy, xz, yz, x2 − y2).

In this way, RP2 inherits a metric.

This addresses the ”metric space” aspect of being a manifold. Yet, we also want each point in RP1 to
have an open ball that looks like R, and each point in RP2 to have an open ball that looks like R2. Do we?

Problem 7.3: Show that there is an injective function f : R1 → RP1 whose image contains every
point except [0 : 1]. Similarly, show there is an injective function g : R1 → RP1 whose image does contain
[0 : 1] (but doesn’t contain, say, [1 : 0]).

In this sense, every point in RP1 at least has a subset which ”looks like” R in our informal visualiza-
tion of RP1. One can formalize this (though we won’t) to conclude RP1 is a 1-dimensional manifold.

Problem 7.4: Let [a : b : c] ∈ RP2 be arbitrary. Show there is an injective function f : R2 → RP2

with [a : b : c] in its image.

When formalized, this too shows RP2 is a 2-dimensional manifold.
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Problem 7.5: (Challenge) Let’s be more formal. Define a metric on RP2 as d([a : b : c], [x : y : z]) as
follows: it will be the minimal distance between a point in [a : b : c] ∩ S2 ⊂ R3 and [x : y : z] ∩ S2 ⊂ R3.
That is, take the line corresponding to [a : b : c] and find the two points A1, A2 ∈ R3 which lie on the line
and the sphere. Similarly, find the two points B1, B2 ∈ R3 for [x : y : z]. Then, set the distance between
[a : b : c] and [x : y : z] to be the minimum of the four distances |Ai −Bj |.

a) Show that d is a metric.

b) Show that every element in RP2 has an open ball (under this metric) which is homeomorphic to R2.

8 Other Projective Spaces (Bonus Section)

Problem 8.1: Define RPn. Show that it contains a copy of Rn as well as some extra points, forming a
copy of RPn−1. How would you visualize RPn?

Problem 8.2: Define CP1. Show that it is homeomorphic to S2.

9 More Paper Constructions (Bonus Section)

Problem 9.1: Let X = [0, 1] × [0, 1] be the unit square. Consider the equivalence relation ∼ with
(0, y) ∼ (y, 0) and (x, 1) ∼ (1, x) for all x, y ∈ R. Describe X/ ∼. Do you recognize the space?

Problem 9.2: Let X = [0, 1] × [0, 1] be the unit square. Consider the equivalence relation ∼ with
(0, y) ∼ (1, 1− y) and (x, 1) ∼ (1− x, 0) for all x, y ∈ R. Describe X/ ∼. Do you recognize the space?

Problem 9.3: In problem 3.1, we constructed a torus by taking the quotient of a square. Construct
a two-holed torus by taking the quotient of an octagon.
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