Oleg Gleizer, Nikita Gladkov

We can do with polynomials a lot of the operations we can do with numbers: addition, subtraction, multiplication. But can we divide them? Yes!

Unfortunately, division is not always so simple

Problem 1 Divide $4x^2 + 5x + 7$ by 2x + 3.

Problem 2 Divide $x^3 - x^2 - x - 15$ by x - 3.

Problem 3 Divide $x^3 - x^2 - x - 15$ by $x^2 - 3$.

Prove the problem 1a from the previous class using long division:

Problem 4 (1a from previous class)

a Let $ax^2 + bx + c = 0$ be a quadratic equation. Show that if it has two distinct real roots x_0, x_1 , then

$$ax^{2} + bx + c = a(x - x_{0})(x - x_{1}).$$

b Show that a quadratic equation cannot have more than two distinct real roots.

c Now suppose that $ax^2 + bx + c$ has exactly one real root x_0 . Show that $ax^2 + bx + c = a(x - x_0)^2$. The following is known as a discriminant of the quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$.

$$D = b^2 - 4ac \tag{1}$$

Theorem 1 If D < 0, then the quadratic equation $ax^2+bx+c = 0$ with real coefficients $a \neq 0$, b, and c has no real roots. If $D \geq 0$, then the following is the formula for the roots of the equation.

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} \tag{2}$$

Problem 5 Prove Theorem 1.

Problem 6 Find all the real solutions of the equation $\sqrt{x-2} = x-4$.

Problem 7 Find all the real solutions of the equation $7\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}\right)=9.$

Problem 8 Sketch the graph of the function $y = ax^2 + bx + c$, given the following information: a > 0, b > 0, D < 0.

Is the coefficient c positive, negative, or zero? Why?

Problem 9 Find all the real solutions of the equation $2x^2 + 6 - 2\sqrt{2x^2 - 3x + 2} = 3x + 3$.

Problem 10 Find all the real solutions of the equation $\sqrt[3]{x+a} + \sqrt[3]{x+a+1} + \sqrt[3]{x+a+2} = 0$.

Vieta Formulas

Theorem 2 Let x_1 and x_2 be the roots of the quadratic equation $ax^2 + bx + c$, $a \neq 0$. Then $x_1 + x_2 = -b/a$ and $x_1x_2 = c/a$.

Problem 11 Prove Theorem 2.

Problem 12 Write down a quadratic equation that has the roots $x_1 = 3$ and $x_2 = -4$.

Problem 13 Generalize Vieta formulas to a cubic equation $ax^3 + bx^2 + cx + d$, $a \neq 0$.

Problem 14 Write down a cubic equation that has the roots $x_1 = 1$, $x_2 = 2$, and $x_3 = 3$.

Problem 15 Without solving the equation $ax^2 + bx + c = 0$, find the sum of the squares of its roots provided that $a \neq 0$ and $D \geq 0$.

Problem 16 Find all the prime numbers p and q such that the equation $x^2 - px - q = 0$ has a solution that is a prime number.

A function f(x) is called *convex* if for any x_1 and x_2 in its domain and for any $0 < \alpha < 1$,

$$f(\alpha x_1 + (1 - \alpha)x_2) < \alpha f(x_1) + (1 - \alpha)f(x_2). \tag{3}$$

Problem 17 Give a geometric interpretation to formula (3).

Problem 18 Prove that for a linear function f(x) = bx + c, $f(\alpha x_1 + (1 - \alpha)x_2) = \alpha f(x_1) + (1 - \alpha)f(x_2)$ for any value of the parameter α .

Problem 19 Prove that $f(x) = ax^2 + bx + c$ is convex for a > 0.

The value \hat{x} is called a *minimum* of a function f(x) if $f(\hat{x}) \leq f(x)$ for every x in the function's domain.

Problem 20 Sketch the graph of a function having two minima.

Problem 21 The function f(x) is convex. Prove that it can have at most one minimum.

Problem 22 Find the minimum of the function $f(x) = ax^2 + bx + c$, a > 0. Prove that it is indeed a minimum. What is the value of the function at the point?

Problem 23 Find the minimum of the function $f(x) = (x - a_1)^2 + (x - a_2)^2 + \ldots + (x - a_n)^2$.

Problem 24 A straight line in the plain is given by the equation ax + by + c = 0. Find the distance from the point (x_0, y_0) to the line.

Problem 25 Prove that for x > 0, $x + \frac{1}{x} \ge 2$.

Problem 26 Given x + y + z = 1, x > 0, y > 0, and z > 0, prove that

1 1 1 ...

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 9.$$