Oleg Gleizer, Nikita Gladkov

We can do with polynomials a lot of the operations we can do with numbers: addition, subtraction, multiplication. But can we divide them? Yes!

$$
\begin{array}{r}
21 \\
2 3 \longdiv { 4 8 9 } \\
\frac{46}{-29} \\
\frac{23}{6}
\end{array}
$$

Unfortunately, division is not always so simple
Problem 1 Divide $4 x^{2}+5 x+7$ by $2 x+3$.

Problem 2 Divide $x^{3}-x^{2}-x-15$ by $x-3$.

Problem 3 Divide $x^{3}-x^{2}-x-15$ by $x^{2}-3$.

Prove the problem 1a from the previous class using long division:

Problem 4 (1a from previous class)

\boldsymbol{a} Let $a x^{2}+b x+c=0$ be a quadratic equation. Show that if it has two distinct real roots x_{0}, x_{1}, then

$$
a x^{2}+b x+c=a\left(x-x_{0}\right)\left(x-x_{1}\right) .
$$

b Show that a quadratic equation cannot have more than two distinct real roots.
\boldsymbol{c} Now suppose that $a x^{2}+b x+c$ has exactly one real root x_{0}. Show that $a x^{2}+b x+c=a\left(x-x_{0}\right)^{2}$.

The following is known as a discriminant of the quadratic equation $a x^{2}+b x+c=0, a \neq 0$.

$$
\begin{equation*}
D=b^{2}-4 a c \tag{1}
\end{equation*}
$$

Theorem 1 If $D<0$, then the quadratic equation $a x^{2}+b x+c=$ 0 with real coefficients $a \neq 0, b$, and c has no real roots. If $D \geq 0$, then the following is the formula for the roots of the equation.

$$
\begin{equation*}
x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a} \tag{2}
\end{equation*}
$$

Problem 5 Prove Theorem 1.

Problem 6 Find all the real solutions of the equation $\sqrt{x-2}=x-4$.

Problem 7 Find all the real solutions of the equation $7\left(x+\frac{1}{x}\right)-2\left(x^{2}+\frac{1}{x^{2}}\right)=9$.

Problem 8 Sketch the graph of the function $y=a x^{2}+b x+c$, given the following information: $a>0, b>0, D<0$.

Is the coefficient c positive, negative, or zero? Why?

Problem 9 Find all the real solutions of the equation $2 x^{2}+6-2 \sqrt{2 x^{2}-3 x+2}=3 x+3$.

Problem 10 Find all the real solutions of the equation $\sqrt[3]{x+a}+\sqrt[3]{x+a+1}+\sqrt[3]{x+a+2}=0$.

Vieta Formulas

Theorem 2 Let x_{1} and x_{2} be the roots of the quadratic equation $a x^{2}+b x+c, a \neq 0$. Then $x_{1}+x_{2}=-b / a$ and $x_{1} x_{2}=c / a$.

Problem 11 Prove Theorem 图.

Problem 12 Write down a quadratic equation that has the roots $x_{1}=3$ and $x_{2}=-4$.

Problem 13 Generalize Vieta formulas to a cubic equation $a x^{3}+b x^{2}+c x+d, a \neq 0$.

Problem 14 Write down a cubic equation that has the roots $x_{1}=1, x_{2}=2$, and $x_{3}=3$.

Problem 15 Without solving the equation $a x^{2}+b x+c=0$, find the sum of the squares of its roots provided that $a \neq 0$ and $D \geq 0$.

Problem 16 Find all the prime numbers p and q such that the equation $x^{2}-p x-q=0$ has a solution that is a prime number.

A function $f(x)$ is called convex if for any x_{1} and x_{2} in its domain and for any $0<\alpha<1$,

$$
\begin{equation*}
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)<\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right) . \tag{3}
\end{equation*}
$$

Problem 17 Give a geometric interpretation to formula (3).

Problem 18 Prove that for a linear function $f(x)=b x+c$, $f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)=\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)$ for any value of the parameter α.

Problem 19 Prove that $f(x)=a x^{2}+b x+c$ is convex for $a>0$.

The value \hat{x} is called a minimum of a function $f(x)$ if $f(\hat{x}) \leq f(x)$ for every x in the function's domain.

Problem 20 Sketch the graph of a function having two minima.

Problem 21 The function $f(x)$ is convex. Prove that it can have at most one minimum.

Problem 22 Find the minimum of the function $f(x)=a x^{2}+b x+c, a>0$. Prove that it is indeed a minimum. What is the value of the function at the point?

Problem 23 Find the minimum of the function

 $f(x)=\left(x-a_{1}\right)^{2}+\left(x-a_{2}\right)^{2}+\ldots+\left(x-a_{n}\right)^{2}$.Problem $24 A$ straight line in the plain is given by the equation $a x+b y+c=0$. Find the distance from the point $\left(x_{0}, y_{0}\right)$ to the line.

Problem 25 Prove that for $x>0, x+\frac{1}{x} \geq 2$.

Problem 26 Given $x+y+z=1, x>0, y>0$, and $z>0$, prove that

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq 9
$$

