
 1

Checksums
Version 1.0 / October 2020

Doug Lichtman

Computers send enormous amounts of information over the Internet, and usually the
information arrives fully intact. Sometimes, however, a power failure, a problem with computer
memory, or some other issue causes data to be corrupted. Computers therefore need a strategy
by which to detect rare, but problematic, errors. One such strategy is the use of a mathematical
confirmation called checksums.

Here’s a simple example.

Image that my computer wanted to send your computer the phone number 3-1-0-7-9-8-2-3-1-0.
If my computer simply sent the numbers, your computer would have no way of knowing whether
it received the message correctly. It would receive some numbers, and it would simply have to
assume that the received message arrived intact.

But now imagine that my computer were to add one digit to the message. The new digit would
be calculated by adding up the intended numbers, dividing by 10, and then reporting the
remainder. Here, for example, the new digit would be a 4, because 3+1+0+7+9+8+2+3+1+0 is
equal to 34, and 34 divided by 10 gives a remainder of 4.

the actual message the added checksum

 2

A computer receiving this message would now detect any single error in the received message.
Imagine, for example, that the receiving computer received the message correctly, as shown
below. The receiving computer would calculate the checksum, that calculation would match the
received checksum, and the computer would know the message was accurate.

But now consider any example where one digit of the messages was corrupted. The calculated
checksum (shown in yellow) would not match the proposed checksum, and so the receiving
computer will know that there was a mistake!

calculated by the
receiving computer;

it matches!

calculated by the
receiving computer

 3

HOMEWORK

Question 1.
The examples above all involve 10-digit numbers. Can this approach work on longer numbers?
Is there any limit to how long the number can be?

Question 2.
The examples above consider only single mistakes. Would this same approach catch mistakes if
two digits were corrupted? Always? Sometimes? Never?

Question 3.
Suppose I tell you that computer data is corrupted very rarely. For example, out of every million
digits sent, imagine that only one digit will be wrong. Knowing that, would you suggest that I use
the checksum approach to catch errors? What’s good about this approach? What’s risky?

Optional Investigation 1.
If you are interested in learning about other strategies that computers use to catch and correct
errors in a data stream, this video summarizes several mind-blowing approaches. Be sure to
check out the part about “checksum grids” at the end of the video.
https://youtu.be/z684BBoM5CA

Optional Investigation 2.
One of my favorite books proposes a strategy for detecting two errors, but I am skeptical that it
actually works. This video summarizes the strategy and asks viewers to write Python code to test
it. But we are mathematicians, so: can you use your knowledge of modular math to show either
that this strategy will work, or that it definitely fails? If it fails, can you use your knowledge of
modular math to fix it?
https://youtu.be/qwlkTbX-klo

https://youtu.be/z684BBoM5CA
https://youtu.be/qwlkTbX-klo

