Problem 1.36. Let $ABCDE$ be a convex pentagon such that $BCDE$ is a square with center O and $\angle A = 90^\circ$. Prove that AO bisects $\angle BAE$. **Hints:** 18 115 **Sol:** p.241

Problem 1.38. In cyclic quadrilateral $ABCD$, let I_1 and I_2 denote the incenters of $\triangle ABC$ and $\triangle DBC$, respectively. Prove that I_1I_2BC is cyclic. **Hints:** 684 569

$\angle B_{I_1}C = \angle B_{I_2}C$

$\angle B_{I_1}C = \angle BAC = \angle BDC = \angle B_{I_2}C$

$\angle B_{I_1}C = 90 + \frac{\angle A}{2} = 90 + \frac{\angle D}{2} = \angle B_{I_2}C$
Example 1.35 (Shortlist 2010/G1). Let \(\triangle ABC \) be an acute triangle with \(D, E, F \) the feet of the altitudes lying on \(BC, CA, AB \) respectively. One of the intersection points of the line \(EF \) and the circumcircle is \(P \). The lines \(BP \) and \(DF \) meet at point \(Q \). Prove that \(AP = AQ \).

\[\measuredangle AP_2Q_2 = \measuredangle C = \measuredangle AQ_2P_2 \]

\[\triangle APD \text{ and } \triangle CPD \text{ are cyclic.} \]

\[\measuredangle APD = \measuredangle C = \measuredangle CPD \]

\[\therefore \triangle DPQ \text{ is isosceles.} \]

\[\measuredangle DPQ = \measuredangle DQP \]

\[\therefore \measuredangle DPQ = \frac{180 - \measuredangle C}{2} \]

\[\measuredangle BFA = 180 - \measuredangle C \]

\[\measuredangle BFA = \measuredangle APQ \]

\[\text{Cyclicity} \]