LAMC Advanced Circle

February 12, 2017

Oleg Gleizer prof1140g@math.ucla.edu

A function f(x) is called *convex* if for any x_1 and x_2 in its domain and for any $0 < \alpha < 1$,

$$f(\alpha x_1 + (1 - \alpha)x_2) < \alpha f(x_1) + (1 - \alpha)f(x_2).$$
(1)

Problem 1 Give a geometric interpretation to formula (1).

Problem 2 Prove that for a linear function f(x) = bx + c, $f(\alpha x_1 + (1 - \alpha)x_2) = \alpha f(x_1) + (1 - \alpha)f(x_2)$ for any value of the parameter α . **Problem 3** Prove that $f(x) = ax^2 + bx + c$ is convex for a > 0.

The value \hat{x} is called a *minimum* of a function f(x) if $f(\hat{x}) \leq f(x)$ for every x in the function's domain.

Problem 4 Sketch the graph of a function having two minima.

Problem 5 The function f(x) is convex. Prove that it can have at most one minimum.

Problem 6 Find the minimum of the function $f(x) = ax^2 + bx + c$, a > 0. Prove that it is indeed a minimum. What is the value of the function at the point?

Problem 7 Find the minimum of the function $f(x) = (x - a_1)^2 + (x - a_2)^2 + \ldots + (x - a_n)^2$.