

Oblivion. $\angle APA = 0$.

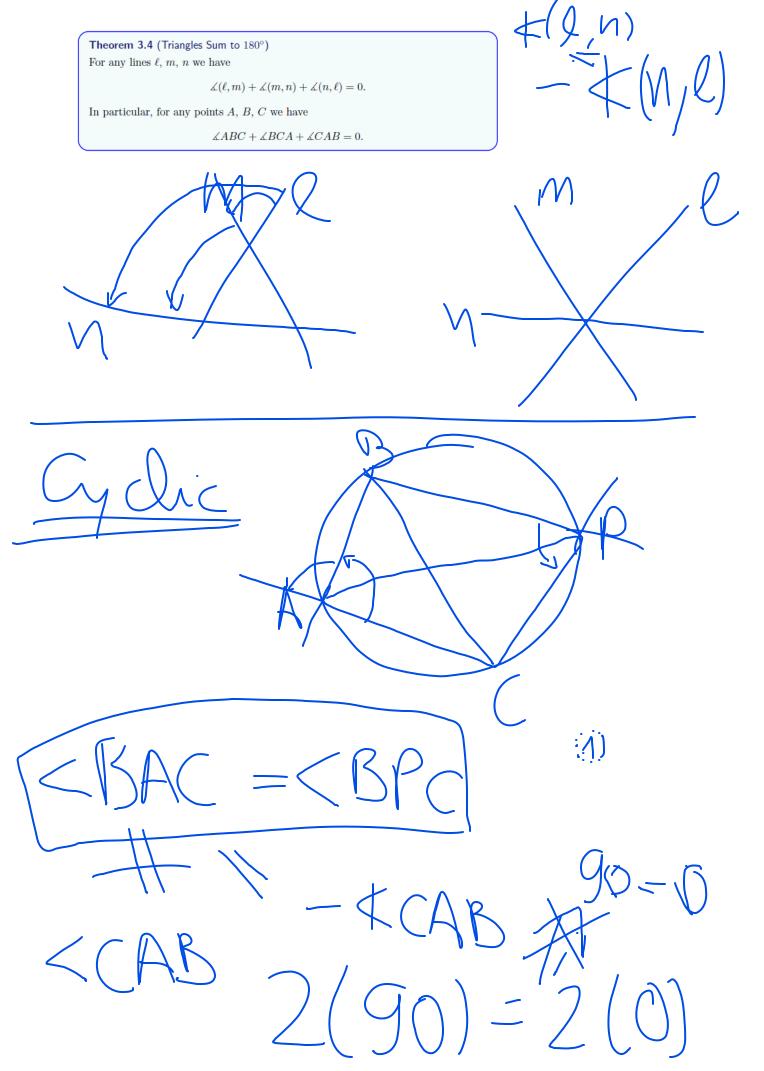
Anti-Reflexivity. $\angle ABC = -\angle CBA$.

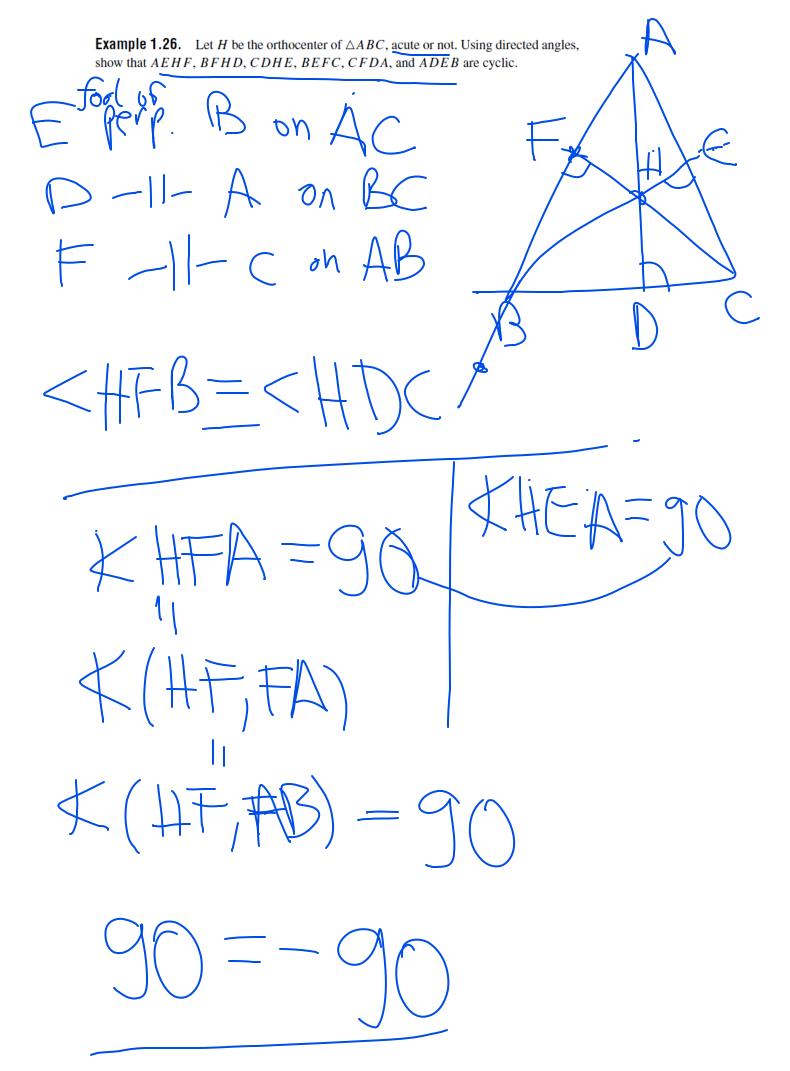
Replacement. $\angle PBA = \angle PBC$ if and only if A, B, C are collinear. (What happens when P = A?) Equivalently, if C lies on line BA, then the A in $\angle PBA$ may be replaced by C.

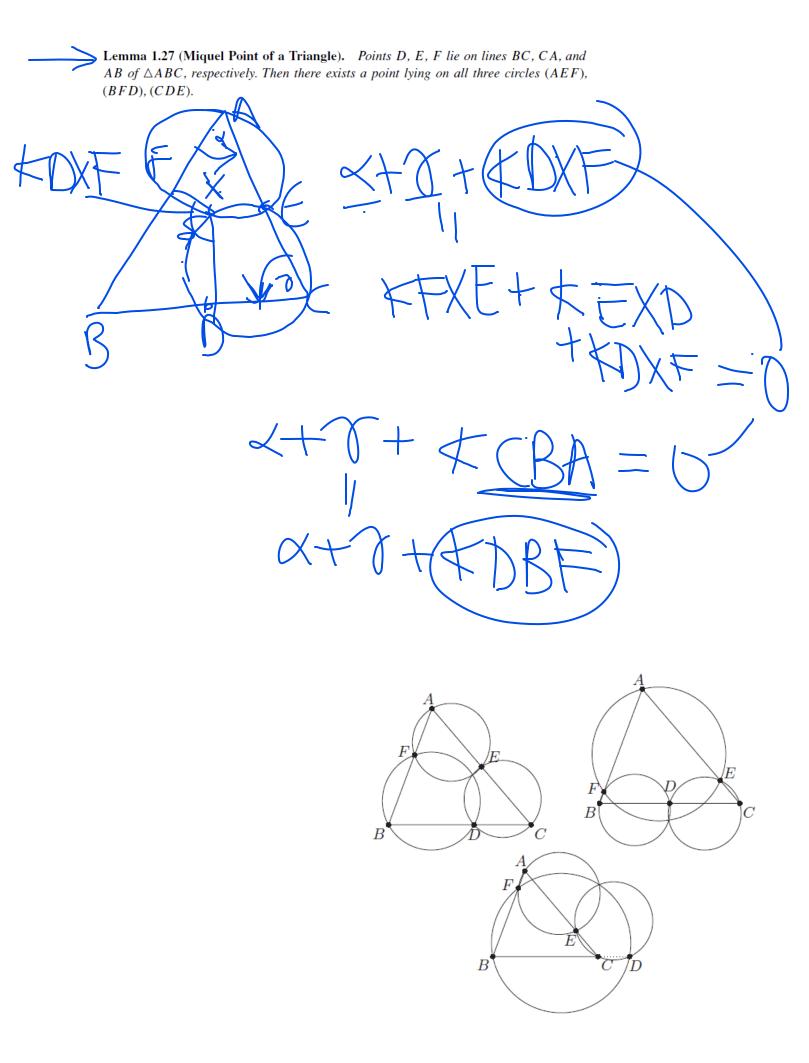
✓ Right Angles. If $\overline{AP} \perp \overline{BP}$, then $\angle APB = \angle BPA = 90^\circ$.

Directed Angle Addition. $\angle APB + \angle BPC = \angle APC$.

* Package * _ w XPBA= XPBC => A,B,C one sollivean L=B, M=BA, M= $t(l_{/M}) = t(l_{/N}) \Longrightarrow A_{|P|}$



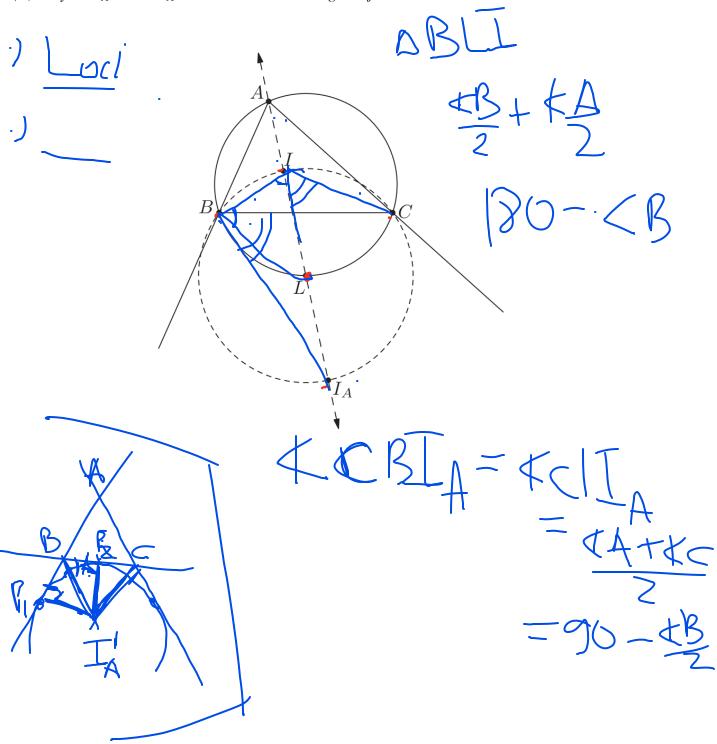




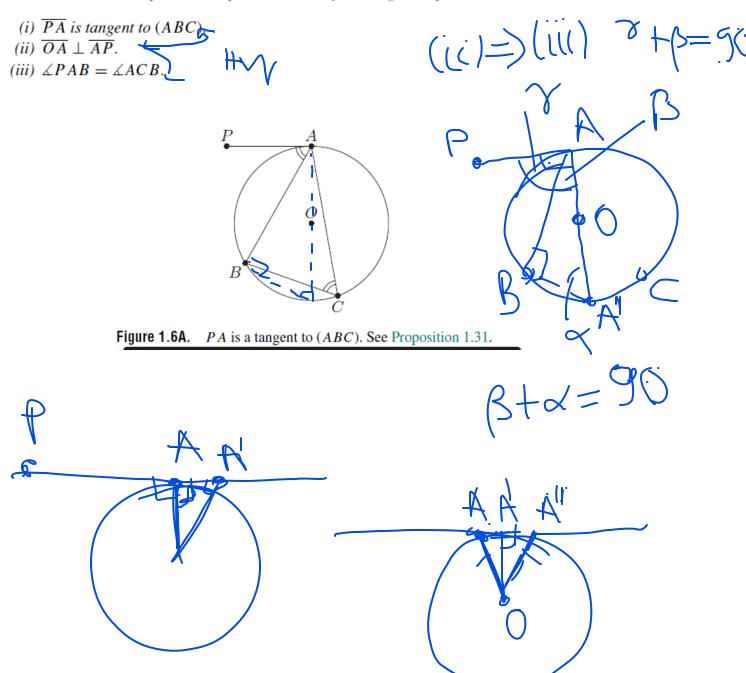
Lemma 1.18 (The Incenter/Excenter Lemma). Let ABC be a triangle with incenter I. Ray AI meets (ABC) again at L. Let I_A be the reflection of I over L. Then,

(a) The points I, B, C, and I_A lie on a circle with diameter $\overline{II_A}$ and center L. In particular, $LI = LB = LC = LI_A$.

(b) Rays BI_A and CI_A bisect the exterior angles of $\triangle ABC$.



Proposition 1.31 (Tangent Criterion). Suppose $\triangle ABC$ is inscribed in a circle with center O. Let P be a point in the plane. Then the following are equivalent:



Lemma 1.48 (Simson Line). Let ABC be a triangle and P be any point on (ABC). Let X, Y, Z be the feet of the perpendiculars from P onto lines BC, CA, and AB. Prove that points X, Y, Z are collinear. Hints: 278 502 Sol: p.243

