Definition. For a subset X of \mathbb{R}, a point x_0 is said to be a limit point iff there is a non-constant sequence in $X - \{x_0\}$ converging to x_0.

Let D be a subset of \mathbb{R}, and let $f : D \to \mathbb{R}$ be a function. If x_0 is a limit point of D, we say that $\lim_{x \to x_0} f(x)$ exists and is equal to L iff for all non-constant sequences a_n converging to x, the sequence $f(a_n)$ converges to L.

Definition. Let X be a subset of \mathbb{R}. A function $f : X \to \mathbb{R}$ is said to be continuous if for all points $x_0 \in I$, the limit of f at x_0 exists, and

\[
\lim_{x \to x_0} f(x) = f(x_0).
\]

Remark. The slogan is: continuous functions commute with taking limits. An alternative way to phrase this is that

\[
a_n \to L \implies f(a_n) \to f(L),
\]

the slogan here being: continuous functions preserve convergent sequences.

Examples. The functions $x^2, a^x, \sin x$ are continuous wherever defined.

Problem 1. Show that if f, g are continuous functions, then $f + g$ and $f \cdot g$ are also continuous, wherever defined.

Problem 2. Show that if $f, g : \mathbb{R} \to \mathbb{R}$ are continuous functions, then so is their composite $g \circ f$.

Theorem. Let $I = [a, b]$ be a closed interval, and let $f : I \to \mathbb{R}$ be a continuous function. Then the image of f (i.e. the set of values attained) is also a closed interval.

Corollary 1. The function f attains both a maximum and a minimum.

Corollary 2. (Intermediate value property) If a real number z is between $f(a)$ and $f(b)$, then there exists a point c in $[a, b]$ so that $f(c) = z$.

Problem 3. Show that $f(x) := x^3 - 3x + 1$ has a real root (i.e., some $x_0 \in \mathbb{R}$ such that $f(x_0) = 0$).

Problem 4. Let n be a positive integer, and let $f : \{1, 2, \ldots, n\} \to \mathbb{Z}$ be a function such that $|f(k) - f(k + 1)| \leq 1$ whenever $1 \leq k < n$. Show that if z is an integer between $f(1)$ and $f(n)$, then there exists an integer c such that $f(c) = z$.

Hint: You can also solve this directly as a discrete problem, but here’s a nice trick: construct a continuous function $f : [1, n] \to \mathbb{R}$ which agrees with the original function on $\{1, \ldots, n\}$, then use the Intermediate Value Property. This will give you some $c \in [1, n]$ such that $f(c) = z$, and you can use the given assumptions to make c be an integer (how?).

Problem 5. Show that there are two antipodal points on Earth’s equator with the same altitude. (Assume altitude is a continuous function.)
Definition. Let I be an interval. A function $f : I \rightarrow \mathbb{R}$ is differentiable at a point $x_0 \in (a, b)$ iff the limit
\[\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \]
equals and is a real number. In this case, we denote its value by $f'(x_0)$, and we call it the “derivative of f at x_0”. If f is differentiable on all of (a, b), then f' becomes a new function.

Problem 6. Show that if $f : I \rightarrow \mathbb{R}$ is differentiable at $x_0 \in I$, then f is also continuous at x_0 (so continuity is weaker then differentiability).

Problem 7. (Differentiation rules). Let I be an interval.

(a) Show that if $f, g : I \rightarrow \mathbb{R}$ are differentiable, then
\[(f + g)' = f' + g' \quad \text{and} \quad (f \cdot g)' = f'g + fg'. \]
Moreover, if g is nonzero on I then
\[\left(\frac{f}{g} \right)' = \frac{f'g - fg'}{g^2}. \]

(b) Show that if $f : \mathbb{R} \rightarrow \mathbb{R}$ and $g : I \rightarrow \mathbb{R}$ are differentiable, then
\[(f \circ g)' = (f' \circ g) \cdot g', \]
meaning that $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$ for all $x \in I$.

Problem 8. All functions are understood on the intervals where they’re well-defined.

(a) Show that for $c \in \mathbb{R}$, the constant function $f(x) = c$ has $f' \equiv 0$.

(b) For a positive integer n, show that
\[(x^n)' = nx^{n-1}, \]
and use this to conclude that
\[\left(a_nx^n + a_{n-1}x^{n-1} + \cdots + a_2x^2 + a_1x + a_0\right)' = na_nx^{n-1} + (n-1)a_{n-1}x^{n-2} + \cdots + 2a_2x + a_1. \]

(c) Show that
\[(\sqrt{x})' = \frac{1}{2\sqrt{x}}. \]

Hint: Compute this directly from the definition of the derivative.

Remark. Here’s a table with more derivatives:

<table>
<thead>
<tr>
<th>$f(x)$</th>
<th>x^r (for $r \neq 0$)</th>
<th>e^x</th>
<th>a^x (for $a > 0$)</th>
<th>$\sin x$</th>
<th>$\cos x$</th>
<th>$\ln x$ (for $x > 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f'(x)$</td>
<td>rx^{r-1}</td>
<td>e^x</td>
<td>$(\ln a)a^x$</td>
<td>$\cos x$</td>
<td>$-\sin x$</td>
<td>$1/x$</td>
</tr>
</tbody>
</table>

It’s fun to check that, formally, these agree with the following infinite series for e^x, $\sin x$ and $\cos x$:

\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots, \quad \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots, \quad \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots \]

Problem 9. Let I be an interval. Show that if $f : I \rightarrow \mathbb{R}$ is differentiable and attains its maximum or minimum at x_0, then $f'(x_0) = 0$. (Since this works for any interval, it suffices to have a local maximum or minimum).
Problem 10. Let $a < b$ be real numbers.
(a) (Rolle’s Theorem). Suppose $f : [a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b). Show that if $f(a) = f(b)$, then
\[\exists c \in (a, b) \quad \text{such that} \quad f'(c) = 0. \]

(b) (Lagrange’s Theorem, or Mean-Value Theorem). Let $f : I \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Show that
\[\exists c \in (a, b) \quad \text{such that} \quad f'(c) = \frac{f(b) - f(a)}{b - a}. \]

Problem 11. Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b).
(a) Show that $f' = 0$ on all of (a, b) if and only if f is constant on $[a, b]$.
(b) Show that $f' \geq 0$ on all of (a, b) if and only if f is nondecreasing on $[a, b]$.
(c) Show that if $f' > 0$ on all of (a, b), then f is strictly increasing on $[a, b]$.
Note that the function x^3 is strictly increasing on $[-1, 1]$, but $(x^3)'(0) = 0$.

Problem 12. Show that $x^4 - 4x + 4$ attains a minimal value on \mathbb{R}, and compute this minimum.

Problem 13. Let I be an interval and $f, g : I \rightarrow \mathbb{R}$ be differentiable such that $f' = g'$ on I. Show that $f = g + c$ for some constant $c \in \mathbb{R}$.

Problem 14. (a) Show that $(x^3)' = x^3(\ln x + 1)$.
(b) Show that x^3 attains its global minimum (for $x > 0$) at $x = \frac{1}{e}$.

Problem 15. Show that the polynomial function $x \mapsto x^3 - 6x^2 + 12x - 18$ is strictly increasing.

Hint: Use Problem 11.