Let us look at the numbers $1, \frac{1}{2}, \frac{1}{3}, \ldots$. This sequence seems to be approaching zero, and yet at no point is it actually equal to zero. So how do we formalize this notion?

Definition. A sequence of real numbers is an assignment $a : \mathbb{N} \to \mathbb{R}$, i.e. an ordered set of real numbers a_1, a_2, a_3, \ldots (we may also write $\{a_n\}_{n \geq 1}$ or $\{a_n\}$ for this sequence). Such a sequence is said to converge to a real number L, called the limit of the sequence, if and only if for all offsets $\varepsilon > 0$, there is an integer N depending on ε such that

$$L - \varepsilon < a_n < L + \varepsilon, \text{ for all } n > N.$$

We write $\lim_{n \to \infty} a_n = L$.

Problem 1. Show that if a sequence $\{a_n\}$ converges to both L and K, then in fact $L = K$. That is, the limit is unique if it exists.

Problem 2. Show that a convergent sequence is bounded. That is, if $\{a_n\}$ converges to some real number L, then there exists a constant M such that $-M < a_n < M$ for all $n \geq 1$.

Problem 3. (a) Show that if $\{a_n\}$ and $\{b_n\}$ are convergent sequences with $a_n \leq b_n$, then

$$\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n.$$

(Note that if $a_n < b_n$, we can still only conclude that $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.)

(b) Show that if $\{a_n\}, \{b_n\}, \{c_n\}$ are sequences with $a_n \leq b_n \leq c_n$, such that $\{a_n\}$ and $\{c_n\}$ converge to the same limit, then $\{b_n\}$ also converges to that limit.

Problem 4. Show that if $\{a_n\}$ converges to L and $\{b_n\}$ converges to K, then $\{a_n + b_n\}$ converges to $L + K$ and $\{a_n \cdot b_n\}$ converges to $L \cdot K$. (It is also true that if $a_n > 0$ converge to L then a_n^r converge to L^r for $r \in \mathbb{R}$.)

Definition. The series associated to a sequence $\{a_n\}$ is the new sequence $\{s_n\}$ of partial sums given by

$$s_n = a_1 + \cdots + a_n.$$

We say that the series converges to a real number S if s converges S. In that case, we write $\sum_{n=1}^{\infty} a_n = S$ and call this limit the value of the series. If the series doesn’t converge, we say that it diverges.

Problem 5. Show that if the series $\sum_n a_n$ converges, then the sequence $\{a_n\}$ must converge to 0. (Hint: subtract two consecutive partial sums and use Problem 4.)

Problem 6. (a) Show that if $-1 < r < 1$, then $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$.

(b) We toss a fair coin until we hit heads on the nth try. What is the probability that n is even?

(c) Interpreting the base-10 number $0.a_1a_2a_3 \ldots$ as $\sum_{n \geq 1} \frac{a_n}{10^n}$, show that $0.999 \ldots = 1$.

Axiom. Any increasing bounded sequence is convergent.
(To show this we would need to formally construct the real numbers; this is one of their defining features. Note that this doesn’t work if we only allow rational numbers.)

Problem 7. Show the same statement for decreasing sequences.

Problem 8. Let \(\{a_n\} \) be the sequence defined recursively by \(a_1 = 1 \) and \(a_{n+1} = \sqrt{2 + a_n} \). Show that \(\lim_{n \to \infty} a_n = 2 \).

Problem 9. Given two sequences \(\{a_n\} \) and \(\{b_n\} \) of non-negative integers such that \(a_n \leq b_n \) and \(\sum b_n \) converges, show that \(\sum a_n \) converges.

Definition. A subsequence of a sequence \(\{a_n\} \) is given by selecting only some terms of the sequence. That is, it is given by \(\{a_{k_n}\} \) where \(\{k_n\} \) is a strictly increasing sequence of indices \(k_1 < k_2 < \cdots \).

Problem 10. Show that any subsequence of a convergent sequence converges to the same limit.

Problem 11. Given any two sequences \(\{a_n\} \) and \(\{b_n\} \) both converging to the same number \(L \), show that the new sequence

\[
c_n = \begin{cases}
 a_{(n+1)/2} & \text{if } n \text{ is odd} \\
 b_{n/2} & \text{if } n \text{ is even}
\end{cases}
\]

given by interlacing \(a \) and \(b \) also converges to \(L \).

Problem 12. (a) Show that \(\sum_n \frac{1}{n} \) diverges.

(b) Show that \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 \).

(c) Show that \(\sum_n \frac{(-1)^n}{n} \) and \(\sum_n \frac{1}{n^2} \) converge.

Problem *13. Suppose that \(\sum_n a_n \) and \(\sum_n b_n \) are two series with the same terms but in a different order, and assume that all \(a_n \geq 0 \). Show that if \(\sum_n a_n \) converges then \(\sum_n b_n \) converges to the same limit.

Problem *14. Show that any bounded sequence has a convergent subsequence.

Problem *15. Let \(S \) be a nonempty bounded set of real numbers. Show that there is real number \(u \) such that \(x \leq u \) for all \(x \in S \), and which is minimal with this property. This is called a supremum, denoted \(u = \sup S \).