TRANSFORMATIONS VIA PERMUTATIONS

JUNIOR CIRCLE 05/08/2011

We will look at the following transformations of an equilateral triangle:

• Rotations;

• Reflections (flips) in a line;

The two types of rotation are:

• Clockwise rotation 🖰:

• Counterclockwise rotation \circlearrowleft :

- (1) When the triangle is rotated, the vertices end up in the new places. This way, we get a permutation of vertices:
 - The first row is starting positions;
 - The second row is ending positions;

Write down the permutations corresponding to the clockwise and the counterclockwise rotations:

(a) Clockwise rotation 🖰:

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ \downarrow & \downarrow & \downarrow \end{array}\right);$$

(b) Counterclockwise rotation \circlearrowleft :

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ \downarrow & \downarrow & \downarrow \end{array}\right)$$

- (3) Let's find the result of performing two transformations in a row:
 - (a) Find what transformation ⋄ ⋄ ⇔ equals to in two different ways:
 - Label vertices and write down what the resulting transformation is:

• Multiply permutatations:

$$\left(\begin{array}{ccc}1&2&3\\\downarrow&\downarrow&\downarrow\end{array}\right)\cdot\left(\begin{array}{ccc}1&2&3\\\downarrow&\downarrow&\downarrow\end{array}\right)=\left(\begin{array}{ccc}1&2&3\\\downarrow&\downarrow&\downarrow\end{array}\right);$$

- Are the results you get when using the picture and when multiplying permutations the same?
- (b) Find what transformation $F_1 \circ F_3$ equals to in two different ways:
 - Label vertices and write down what the resulting transformation is:

• Multiply permutations:

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ \downarrow & \downarrow & \downarrow \end{array}\right) \cdot \left(\begin{array}{ccc} 1 & 2 & 3 \\ \downarrow & \downarrow & \downarrow \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ \downarrow & \downarrow & \downarrow \end{array}\right);$$

- Are the results you get when using the picture and when multiplying permutations the same?
- (c) Find what transformation $F_1 \circ \circlearrowleft$ equals to in two different ways:
 - Label vertices and write down what the resulting transformation is:

• Multiply permutations:

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ \downarrow & \downarrow & \downarrow \end{array}\right) \cdot \left(\begin{array}{ccc} 1 & 2 & 3 \\ \downarrow & \downarrow & \downarrow \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ \downarrow & \downarrow & \downarrow \end{array}\right);$$

• Are the results you get when using the picture and when multiplying permutations the same?