COMPLEX NUMBERS IN GEOMETRY

LAMC OLYMPIAD GROUP, WEEK 10

Last time, we defined complex numbers as $z=a+b i$, where a, b are real numbers called the real and imaginary parts of z. We can add and multiply complex numbers in the natural way, with the convention that $i^{2}=-1$ (so for example, $(1-i)(1+i)=1-i^{2}=2$). We now want to use complex numbers to solve geometry problems; we'll go over this in more detail in our online sessions from Spring Quarter.

1. Recap: Operations with Complex Numbers

Recall what the addition and multiplication of complex numbers look like in the plane:

- When adding z and w, their real parts (which are the x-coordinates) add up, and their imaginary parts (the y-coordinates) add up too:

$$
\operatorname{Re}(z+w)=\operatorname{Re} z+\operatorname{Re} w, \quad \operatorname{Im}(z+w)=\operatorname{Im} z+\operatorname{Im} w .
$$

- When multiplying z and w, their absolute values (lengths) multiply, and their arguments (angles modulo 2π with the x-axis) add up:

$$
|z w|=|z| \cdot|w|, \quad \arg (z w)=\arg z+\arg w
$$

In the picture above, $\arg z=\alpha, \arg w=-\beta$, and $\arg (z w)=\alpha-\beta$.
Hence addition with a complex number is a translation (by $\operatorname{Re} z$ in the x-direction and by $\operatorname{Im} z$ in the y-direction), and multiplication by a complex number is a scaling (by $|z|$) plus a rotation (by arg z).
You can think of the difference $z-w$ of two complex numbers as the vector (imagine an arrow) from w to z; see the red arrow above. Then $|z-w|$ is the distance between z and $w, \operatorname{and} \arg (z-w)$ is the directed angle that the line from w to z makes with the x-axis. When we divide two such differences, we see that

$$
\begin{aligned}
\arg \frac{a-b}{c-d} & =\arg (a-b)-\arg (c-d) \\
& =\text { Directed angle }(\text { Ray from } d \text { to } c, \text { Ray from } b \text { to } a),
\end{aligned}
$$

for $a, b, c, d \in \mathbb{C}$ with $a \neq b$ and $c \neq d$. By directed angle, we mean that direction is also taken into account (so for example $\alpha \neq-\alpha$ unless $\alpha=0$ or $\alpha=\pi=180^{\circ}$).

Also recall that we can conjugate complex numbers as $\overline{a+b i}=a-b i$ for $a, b \in \mathbb{R}$, and conjugation jumps over addition, subtraction, multiplication and division. We have $\operatorname{Re} z=\frac{z+\bar{z}}{2}$ and $\operatorname{Im} z=\frac{z-\bar{z}}{2}$, so saying that a number z is real is the same as saying $\bar{z}=z$, and saying that z is (purely) imaginary is equivalent to $\bar{z}=-z$. Other properties include $|z|^{2}=z \cdot \bar{z}$, and $|z+w| \leq|z|+|w|$ (the triangle inequality).

2. Useful Facts about Complex Numbers in Geometry

Problem 1. (Parallelism and perpendicularity). Let a, b, c, d be complex numbers such that $a \neq b$ and $c \neq d$.
(a) Show that the line through a and b is parallel or equal to the line through c and d if and only if

$$
\frac{a-b}{c-d}=\frac{\bar{a}-\bar{b}}{\bar{c}-\bar{d}} .
$$

(In particular, we can take $d=b$ to get a condition for when a, b, c are collinear.)
Hint: Read the previous page, and try to show that this is equivalent to saying that $\frac{a-b}{c-d}$ is a real number.
(b) Show that the line through a and b is perpendicular to the line through c and d if and only if

$$
\frac{a-b}{c-d}=-\frac{\bar{a}-\bar{b}}{\bar{c}-\bar{d}}
$$

Hint: Show that this is equivalent to saying that $\frac{a-b}{c-d}$ is an imaginary number.

Problem 2. (Midpoint and centroid). Let a, b, c be distinct complex numbers.
(a) Show that midpoint of the segment joining a and b is $\frac{a+b}{2}$. Hint: Look at the x-coordinates (real parts) and y-coordinates (imaginary parts) separately.
(b) Show that the center of mass (centroid) of the triangle with vertices a, b, c is $\frac{a+b+c}{3}$.

Problem 3. (Orthocenter). Let a, b, c be distinct complex numbers on a circle centered at 0 . Show that the orthocenter of the triangle with vertices a, b, c is given by $h=a+b+c$. Hint: Try to show that the vectors $h-a$ and $b-c$ are perpendicular using Problem 1 (b).

Problem 4. (Equilateral triangles). Let a, b, c be distinct complex numbers. Show that the triangle with vertices a, b, c is equilateral if and only if

$$
a^{2}+b^{2}+c^{2}=a b+b c+c a .
$$

Problem 5. (Inversion) Let z be a complex number such that $\operatorname{Re} z=1$. Show that $1 / z$ lies on the circle of center $1 / 2$ and radius $1 / 2$. Hint: Use the Pythagorean Theorem to show that the distance between z and $1 / 2$ is $1 / 2$.

3. Actual Geometry Problems (that can be solved via complex numbers)

Problem 6. (Ptolemy's Inequality). Show that for any quadrilateral $A B C D$, one has

$$
A B \cdot C D+A D \cdot B C \geq A C \cdot B D
$$

Hint: let a, b, c, d be the complex numbers representing points A, B, C, D, and show first that

$$
(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d)
$$

Then take absolute values of both sides, and apply the triangle inequality (this is pure magic!).
Problem 7. In a non-equilateral triangle $\triangle A B C$, let O be the circumcenter, G the center of mass and H the orthocenter. Show that O, G and H are collinear in this order, and moreover that $G H=2 O G$.
Hint: Take the origin at O (that is, O corresponds to the complex number 0) and use Problems 2(b), 3.
Problem 8. (Napoleon's Theorem) Let $\triangle A B C$ be a triangle, and construct equilateral triangles $\triangle B C D$, $\triangle C A E, \triangle A B F$ outside the triangle. Show that the centers of these 3 equilateral triangles also form an equilateral triangle.
Hint: Denote the vertices of the original triangle by $a, b, c \in \mathbb{C}$, and then find explicit formulas for d, e, f and the three centers in terms of a, b, c. Then use Problem 4 from the previous section to test that the centers form an equilateral triangle.

Problem 9. Let $A B C D$ be a convex quadrilateral, and construct squares $A B E F, B C G H, C D I J$ and $D A K L$ outside the quadrilateral. Let W, X, Y, Z be the centers of these, respectively. Show that $W Y \perp X Z$ and also $W Y=X Z$.
Hint: As before, denote by a, b, c, d the complex numbers representing the vertices A, B, C, D, and then compute the centers w, x, y, z in terms of a, b, c, d. Then compute $w-y, x-z$ and $\frac{w-y}{x-z}$.

Problem 10. In a triangle $\triangle A B C$, let H be the orthocenter and let M be the midpoint of $B C$. Show that the symmetric point of H with respect to M lies on the circumcircle of $\triangle A B C$.

Problem 11. (Apollonius' theorem) Let $\triangle A B C$ be a triangle and M be the midpoint of $B C$. Show that

$$
A M^{2}=\frac{A B^{2}+A C^{2}}{2}-\frac{B C^{2}}{4} .
$$

Problem 12. Let P be the set of n vertices of a regular n-gon with radius 1 (with $n \geq 3$; by radius we mean the radius of the circumscribed circle). Show that the average (arithmetic mean) of the squared distances between two points in P is 2 (in the average we include segments of length 0 and double count segments $A B$ and $B A$). In other words, show that

$$
\frac{1}{n^{2}} \sum_{A, B \in P} A B^{2}=2
$$

