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Problem 0: An integer x ∈ Z is called even if x = 2k for some integer k ∈ Z, and it is called odd if
x = 2k + 1 for some k ∈ Z. You may use the fact that every integer is either even or odd (but never both).

a) Show that the product of two odd integers is odd.

b) We say an integer d 6= 0 divides an integer a ∈ Z if there exists an integer k ∈ Z with dk = a. Let a ∈ Z.
Show that if 5 divides 2a, then 5 divides a.

c) Prove that for any n ∈ Z, 5n2 + 3n+ 7 is odd.

d) Let a, b, c ∈ Z with a2 + b2 = c2. Show either a is even or b is even.

e) Show every odd integer is the difference of two squares.

You must get your solution to Problem 0 approved by the instructor at your table.
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Problem 1: A real number r ∈ R is called rational if there exist integers a, b ∈ Z with b 6= 0 such that
r = a/b. It is called irrational otherwise.

a) Show
√

2 is irrational.

b) Prove that the product of rational numbers must be rational, while the product of irrational numbers
may be rational or irrational. (If you claim a number is irrational, prove it!).
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Problem 2: Let X = {n ∈ Z : n ≥ 2}. For k ≥ 2, define Xk = {kn : n ∈ X}. What is the set X \∪∞k=2Xk?
Prove your claim.
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Problem 3: For a set X, define the diagonal of the set to be the subset of X × X given by ∆(X) =
{(i, i) ∈ X ×X : i ∈ X}.

A (simple undirected) graph is an ordered pair G = (V,E), where V is a set, and E ⊂ V × V is a subset
with (i, j) ∈ E ⇐⇒ (j, i) ∈ E, and E ∩∆(V ) = ∅. The elements of V are called vertices, and the elements
of E are called edges.

a) (Conceptual) Explain what the conditions on the set E mean.

b) (Conceptual) The degree δ(i) of a vertex i ∈ V is, intuitively, the number of edges touching that vertex.
Write down a formal definition of δ(i) by writing it as the size of a particular subset of E. Use set-builder
notation similar to the definitions seen above. Recall that if X is a set, |X| denotes its cardinality (size).

c) There are 9 people at a party. Show that it is impossible for each of them to be friends with exactly 3
other people at the party (assuming friendship is always mutual).
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Problem 4: Recall a function f : X → Y is injective if f(x) = f(y) implies x = y. A function f : X → Y
is surjective if for each y ∈ Y , there exists an x ∈ X with f(x) = y.

Let A,B,C be sets, and let f : A→ B and g : B → C be functions. Define h = g ◦ f .

a) Show that if h is injective, then f is injective. Show that g may not necessarily be injective.

b) Show that if h is surjective, then g is surjective. Show that f may not necessarily be surjective.
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Problem 5: Let X = {1, 2, 3, ..., n} for some integer n ≥ 2. Let k be an integer with 1 ≤ k ≤ n − 1. Let
E = {Y ⊂ X : |Y | = k}. Let E1 = {Y ∈ E : 1 ∈ Y } and E2 = {Y ∈ E : 1 6∈ Y }.

a) Show {E1, E2} is a partition1 of E. That is, show ∅ 6= E1 ⊂ E, ∅ 6= E2 ⊂ E, E1∪E2 = E and E1∩E2 = ∅.

b) Compute |E1|, |E2|, and |E|. You may use the fact that the number of subsets of size k of a set of size n
is precisely

(
n
k

)
. Recall (

n

k

)
=

n!

(n− k)! · k!

c) Conclude for any n ≥ 2 and 1 ≤ k ≤ n− 1,
(
n−1
k

)
+
(
n−1
k−1
)

=
(
n
k

)
.

d) For t ∈ N, show
(
2t
t

)
is even.

1Let X be a nonempty set. Let P(X) be its power set (the set of all subsets of X). A partition of X is a subset S ⊂ P(X)
such that

⋃
A∈S A = X and for all A,B ∈ S, if A 6= B, then A ∩B = ∅. To avoid redundancies, we also insist every element of

S is nonempty.
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Problem 6: For this problem, you may need the division algorithm2 and the well-ordering principle3.

Let x, y ∈ N be natural numbers. Consider the set S = {ax+ by : a, b ∈ Z, ax+ by > 0}.

a) Show S has a least element. Hereafter, we denote this as the element d ∈ S.

b) Let z = gcd(x, y). Show z divides d.

c) Show d divides x and d divides y.

d) Prove or disprove: gcd(x, y) ∈ S.

2Theorem (Division Algorithm): Let a, b ∈ Z be integers with a > 0. Then there exist unique integers q, r ∈ Z with
b = aq + r and 0 ≤ r < a.

3The well-ordering principle states that every nonempty subset of the natural numbers has a least element.
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Problem 7: Revisit Problem 4 for the definition of injective and surjective functions.

a) Let f : X → Y be an injective function. Show that for any two functions g : Z → X and h : Z → X, if
f ◦ g = f ◦ h as functions from Z to Y , i.e. they agree on every input z ∈ Z, then g = h as functions
from Z to X. (This is a one line proof, so try to sort out what’s happening).

b) Let f : X → Y be a surjective function. Show that for any two functions g : Y → W and h : Y → W , if
g ◦ f = h ◦ f as functions, then g = h as functions.

c) * Let f : X → Y be a function such that for any set Z and any two functions g : Z → X and h : Z → X,
if f ◦ g = f ◦ h, then g = h. Show that f is injective.

d) * Let f : X → Y be a function such that for any set W and any two functions g : Y →W and h : Y →W ,
if g ◦ f = h ◦ f , then g = h. Show f is surjective.
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Problem 8: In this problem we prove the binomial theorem: for real numbers a, b and natural number
n ≥ 0, we have

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k

To prove this result, we first let a, b ∈ R be arbitrary.

a) Verify the formula works for n = 0. You should probably also try out n = 1, 2, 3 just to get a sense of
what is going on.

b) Let N ∈ N be a fixed natural number. Suppose we know for that specific value, n = N , that

(a+ b)N =

N∑
k=0

(
N

k

)
akbN−k

Multiply both sides of this equation by a+ b and simplify, to show

(a+ b)N+1 =

N+1∑
k=0

(
N + 1

k

)
akbN+1−k

i.e. that the formula above works for n = N + 1.

c) Conclude the formula works for all natural numbers n ≥ 0. Since a, b ∈ R were arbitrary, we conclude it
works for all a, b ∈ R and all n ≥ 0.
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Problem 9: A relation on a set X is a subset R ⊂ X × X. R is called reflexive if (x, x) ∈ R for each
x ∈ X. It is called symmetric if (x, y) ∈ R⇒ (y, x) ∈ R. It is transitive if (x, y), (y, z) ∈ R⇒ (x, z) ∈ R. A
relation that is reflexive, symmetric and transitive is called an equivalence relation. The equivalence class of
an element x ∈ X is the set [x] = {y ∈ X : (x, y) ∈ R}.

LetR be an equivalence relation on a nonempty setX. Show the collection of equivalence classes {[x] : x ∈ X}
(as defined above) is a partition of X. (Recall a partition of X is a collection of nonempty subsets of X
which are pairwise disjoint and whose union is all of X.)
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Problem 10: Revisit problem 3 for the definition of an undirected graph, and the degree of a vertex.

Let G = (V,E) be an undirected graph. A path in G is a sequence of vertices v0, v1, ..., vn ∈ V (for
some n ≥ 0) such that (vi, vi+1) ∈ E for each i = 0, ..., n− 1. Such a path is called a path from v0 to vn.

A graph is connected if for any v, w ∈ V , we have a path from v to w.

a) Let R be a relation on V given as follows: (v, w) ∈ R if and only if there is a path from v to w in G.
Show R is an equivalence relation. Its equivalence classes are called the connected components of G. Do
you see why?

b) Let G be a graph with 10 vertices (i.e. |V | = 10), such that each vertex has degree exactly 5. Consider
the following proofs that G is connected. Which of these are correct, and which are incorrect?

i) Suppose G is not connected. Let’s group the vertices into two groups of 5 vertices each. Draw
edges from each vertex to other vertices within its group. Now every vertex has degree 4. We need
every vertex to have degree 5, but on the other hand, adding even one more edge makes the graph
connected. So we cannot simultaneously have all degrees 5 while also keeping the graph disconnected.
By contradiction, the graph must be connected.

ii) Suppose G is not connected. Let v, w ∈ V be two arbitrary vertices. Since v has degree 5, it is
connected to five vertices v1, v2, v3, v4, v5. Since w has degree 5, it is connected to five vertices,
w1, w2, w3, w4, w5. In total, this is 12 vertices, but we only have 10. By contradiction, we must have
G is connected.

iii) Let v, w ∈ V be arbitrary. If v = w, there is a trivial path via v0 = v.

Suppose v 6= w. If they have an edge between them, we have a path from v to w via the se-
quence of vertices v0 = v, v1 = w.

Suppose v 6= w and there is not an edge between them. Since v has degree 5, it is connected to five
(distinct) vertices v1, ..., v5. Since w has degree 5, it is connected to five (distinct) vertices w1, ..., w5.
Since there are in total 10 vertices, we must have a repeat in the list v, w, v1, ..., v5, w1, ..., w5. Since
v 6= w, those cannot be the repeats. Since there is no edge from v to w, w cannot appear on the list
v1, ..., v5. Similarly, v cannot appear in the list w1, ..., w5. There also can’t be a repeat with vi = vj
for some i 6= j, or wi = wj for i 6= j. Thus, we must have vi = wj for some i, j. But then we have a
path v0 = v, v1 = wj , v2 = w, since (v0, wj) = (v0, vi) ∈ E, and (wj , w) ∈ E.

Note v, w ∈ V were arbitrary, and we’ve shown there is a path between them in all cases above.
Thus, G is connected. (In fact, we’ve shown there is a path of length at most 2 between any two
vertices of G).

iv) Let v, w ∈ V be arbitrary. We show there is a path from v to w. If v = w there is nothing to show.
If there is an edge from v to w, there is again nothing to show. Now, other than v and w, there
are 8 vertices left. v must have edges to 5 of them, and w must have edges to 5 of them. Thus, by
the pigeonhole principle, there must be some vertex of the remaining 8, call it x, which has an edge
to both v and w. Then v0 = v, v1 = x, v2 = w is a path in G. Since v, w ∈ V were arbitrary, we
conclude G is connected.
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v) Note v ∈ V is connected to 5 other vertices. Thus, its connected component has size at least 6
vertices. Since v was arbitrary, it must be that any connected component has size at least 6. On the
other hand, the sum of the number of vertices in each connected component is 10.

More formally, let C1, ..., Ck ⊂ V be the connected components. We have |C1| + ... + |Ck| = 10,
but also, each |Ci| ≥ 6. So 10 = |C1|+ ...+ |Ck| ≥ 6 + ...+ 6 = 6k. So 6k ≤ 10, and k ≤ 10/6 < 2. So
the number of connected components is at least 1 and is strictly less than 2. Since it is an integer,
it must be precisely k = 1. Thus, the graph is connected.

vi) We prove by induction on n that for any choice v1, v2, . . . , vn of n distinct vertices ofG, all v1, v2, . . . , vn
lie in the same connected component of G. Once this is established, the case n = 10 gives the desired
result. (Note that for n > 10, this statement is vacuously true, since there are no choices of n dis-
tinct vertices about which we are making a claim. This is analogous to the fact that every unicycling
elephant enrolled in LAMC knows a proof of the Riemann Hypothesis in ZFC and will show it to
you if you give it candy.)

Base case n = 1: In this case, there is only one vertex, so it certainly lies in the same con-
nected component as itself.

Inductive step: Supposing the result is known for any choice of n distinct vertices, we show
that the same is true for any choice of n+ 1 distinct vertices. If n+ 1 > 10, this is vacuously true of
any choice of n+1 distinct vertices since there are no such choices; otherwise fix any distinct vertices
v1, v2, . . . , vn+1. Considering the set v1, v2, . . . , vn, the inductive hypothesis gives that v1, v2, . . . , vn
all lie in the same connected component of G. In particular, there is some path in G (which may use
vertices outside of our chosen ones!) from v1 to vn. On the other hand, considering the n distinct
vertices v2, v3, . . . , vn, vn+1, the inductive hypothesis tells us that there is similarly a path from vn
to vn+1. Combining the path from v1 to vn with the path from vn to vn+1 gives a path from v1 to
vn+1. Of course, since the labelling v1, v2, . . . , vn+1 was arbitrary, given any two distinct vertices in
that set, we may arrange for one of them to labeled v1 and the other vn+1, so this shows that any
two vertices in v1, v2, . . . , vn+1 are connected by a path in G and hence lie in the same connected
component.
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Challenge Topic - Group Actions

A binary operation ∗ on a set X is a function ∗ : X×X → X. For ∗(a, b), we write a∗ b. A binary operation
is associative if ∗(∗(a, b), c) = ∗(a, ∗(b, c)), i.e. (a ∗ b) ∗ c = a ∗ (b ∗ c).

An identity element e ∈ X is an element such that for each x ∈ X, we have e ∗ x = x ∗ e = x. An el-
ement y ∈ X is called an inverse of x ∈ X if y ∗ x = x ∗ y is an identity element.

A group is a set G along with a binary operation ∗ such that ∗ is associative, G has an identity element,
and each g ∈ G has an inverse. We write (G, ∗) or simply G for the group.

1. Let (G, ∗) be a group. Show that if e, e′ ∈ G are identity elements, then e = e′. Show if y, y′ ∈ X are
inverses of x ∈ X, then y = y′.

2. Let X be a set, and define Sym(X) = {f : X → X|f is a bijection}. Show Sym(X) with the operation
of function composition is a group. For |X| finite of size n, what is |Sym(X)|?

3. Let G and H be groups. A group homomorphism is a function f : G → H such that f(g ∗ h) =
f(g) ∗ f(h). Show f(eG) = eH (identity maps to identity).

4. An action of a group G on a set X is a homomorphism φ : G→ Sym(X). For g ∈ G, x ∈ X, we write
g.x for φ(g)(x).

The stabilizer of x ∈ X under a group action is written as Gx = {g ∈ G : g.x = x} ⊂ G. Show
Gx is a subgroup of G. (A subset H ⊂ G is a subgroup if the group operation on G can be restricted
to an operation on H, and H is a group with respect to this operation.)

5. Let H ⊂ G be a subgroup and g ∈ G an element. Define the (left) coset gH as gH = {gh : h ∈ H}.
Set up an equivalence relation4 on G whose equivalence classes are precisely the cosets, and conclude
the cosets partition G. We write G/H = {gH : g ∈ G} as the set of cosets.

6. The orbit of an element x ∈ X is written as G.x = {g.x ∈ X|g ∈ G}. Prove the Orbit-Stabilizer
Theorem: if G is a finite group and X is a finite set, then

|G|
|Gx|

= |G.x|

for each x ∈ X.

Hereafter, we assume |G| and |X| are finite.

7. Show that the orbits of a group action of G on set X partition X. Show that the number of orbits is
precisely 1

|G|
∑

g∈G |Xg|, where

Xg = {x ∈ X|g.x = x}

8. An action of G on a set X is called transitive if G.x = X for some x ∈ X. Show that this implies
G.y = X for any y ∈ X.

9. For H ⊂ G a subgroup, G acts naturally on G/H via k.(gH) = (kg)H, for k, g ∈ G. Show that this is
well-defined (i.e. if gH = g′H, then (kg)H = (kg′)H). Show that this action is transitive.

10. Show that if G acts transitively on a set X, we may find a subgroup H ⊂ G and a bijection f : X →
G/H with f(g.x) = g.f(x) for each g ∈ G and x ∈ X.

4A relation on a set X is a subset R ⊂ X ×X. R is called reflexive if (x, x) ∈ R for each x ∈ X. It is called symmetric if
(x, y) ∈ R⇒ (y, x) ∈ R. It is transitive if (x, y), (y, z) ∈ R⇒ (x, z) ∈ R. A relation that is reflexive, symmetric and transitive
is called an equivalence relation. The equivalence class of an element x ∈ X is the set [x] = {y ∈ X : (x, y) ∈ R}.

Exercise: Show the collection of equivalence classes {[x] : x ∈ X} (as defined above) is a partition of X.


