Problem 0: An integer $x \in \mathbb{Z}$ is called even if x = 2k for some integer $k \in \mathbb{Z}$, and it is called odd if x = 2k + 1 for some $k \in \mathbb{Z}$. You may use the fact that every integer is either even or odd (but never both).

- a) Show that the product of two odd integers is odd.
- b) We say an integer $d \neq 0$ divides an integer $a \in \mathbb{Z}$ if there exists an integer $k \in Z$ with dk = a. Let $a \in \mathbb{Z}$. Show that if 5 divides 2a, then 5 divides a.
- c) Prove that for any $n \in \mathbb{Z}$, $5n^2 + 3n + 7$ is odd.
- d) Let $a, b, c \in \mathbb{Z}$ with $a^2 + b^2 = c^2$. Show either a is even or b is even.
- e) Show every odd integer is the difference of two squares.

You must get your solution to Problem 0 approved by the instructor at your table.

Problem 1: A real number $r \in \mathbb{R}$ is called *rational* if there exist integers $a, b \in \mathbb{Z}$ with $b \neq 0$ such that r = a/b. It is called irrational otherwise.

- a) Show $\sqrt{2}$ is irrational.
- b) Prove that the product of rational numbers must be rational, while the product of irrational numbers may be rational or irrational. (If you claim a number is irrational, prove it!).

Problem 2: Let $X = \{n \in \mathbb{Z} : n \ge 2\}$. For $k \ge 2$, define $X_k = \{kn : n \in X\}$. What is the set $X \setminus \bigcup_{k=2}^{\infty} X_k$? Prove your claim.

Name:

Problem 3: For a set X, define the *diagonal* of the set to be the subset of $X \times X$ given by $\Delta(X) = \{(i,i) \in X \times X : i \in X\}.$

A (simple undirected) graph is an ordered pair G = (V, E), where V is a set, and $E \subset V \times V$ is a subset with $(i, j) \in E \iff (j, i) \in E$, and $E \cap \Delta(V) = \emptyset$. The elements of V are called vertices, and the elements of E are called edges.

- a) (Conceptual) Explain what the conditions on the set E mean.
- b) (Conceptual) The degree $\delta(i)$ of a vertex $i \in V$ is, intuitively, the number of edges touching that vertex. Write down a formal definition of $\delta(i)$ by writing it as the size of a particular subset of E. Use set-builder notation similar to the definitions seen above. Recall that if X is a set, |X| denotes its cardinality (size).
- c) There are 9 people at a party. Show that it is impossible for each of them to be friends with exactly 3 other people at the party (assuming friendship is always mutual).

Challenge Topic - Group Actions

A binary operation * on a set X is a function $*: X \times X \to X$. For *(a, b), we write a * b. A binary operation is associative if *(*(a, b), c) = *(a, *(b, c)), i.e. (a * b) * c = a * (b * c).

An identity element $e \in X$ is an element such that for each $x \in X$, we have e * x = x * e = x. An element $y \in X$ is called an inverse of $x \in X$ if y * x = x * y is an identity element.

A group is a set G along with a binary operation * such that * is associative, G has an identity element, and each $g \in G$ has an inverse. We write (G, *) or simply G for the group.

- 1. Let (G, *) be a group. Show that if $e, e' \in G$ are identity elements, then e = e'. Show if $y, y' \in X$ are inverses of $x \in X$, then y = y'.
- 2. Let X be a set, and define $Sym(X) = \{f : X \to X | f \text{ is a bijection}\}$. Show Sym(X) with the operation of function composition is a group. For |X| finite of size n, what is |Sym(X)|?
- 3. Let G and H be groups. A group homomorphism is a function $f : G \to H$ such that f(g * h) = f(g) * f(h). Show $f(e_G) = e_H$ (identity maps to identity).
- 4. An action of a group G on a set X is a homomorphism $\phi: G \to Sym(X)$. For $g \in G, x \in X$, we write g.x for $\phi(g)(x)$.

The stabilizer of $x \in X$ under a group action is written as $G_x = \{g \in G : g : x = x\} \subset G$. Show G_x is a subgroup of G. (A subset $H \subset G$ is a subgroup if the group operation on G can be restricted to an operation on H, and H is a group with respect to this operation.)

- 5. Let $H \subset G$ be a subgroup and $g \in G$ an element. Define the (left) coset gH as $gH = \{gh : h \in H\}$. Set up an equivalence relation⁴ on G whose equivalence classes are precisely the cosets, and conclude the cosets partition G. We write $G/H = \{gH : g \in G\}$ as the set of cosets.
- 6. The orbit of an element $x \in X$ is written as $G.x = \{g.x \in X | g \in G\}$. Prove the Orbit-Stabilizer Theorem: if G is a finite group and X is a finite set, then

$$\frac{|G|}{|G_x|} = |G.x|$$

for each $x \in X$.

Hereafter, we assume |G| and |X| are finite.

7. Show that the orbits of a group action of G on set X partition X. Show that the number of orbits is precisely $\frac{1}{|G|} \sum_{g \in G} |X^g|$, where

$$X^g = \{x \in X | g.x = x\}$$

- 8. An action of G on a set X is called *transitive* if G.x = X for some $x \in X$. Show that this implies G.y = X for any $y \in X$.
- 9. For $H \subset G$ a subgroup, G acts naturally on G/H via k.(gH) = (kg)H, for $k, g \in G$. Show that this is well-defined (i.e. if gH = g'H, then (kg)H = (kg')H). Show that this action is transitive.
- 10. Show that if G acts transitively on a set X, we may find a subgroup $H \subset G$ and a bijection $f: X \to G/H$ with f(g.x) = g.f(x) for each $g \in G$ and $x \in X$.

Exercise: Show the collection of equivalence classes $\{[x] : x \in X\}$ (as defined above) is a partition of X.

⁴A relation on a set X is a subset $R \subset X \times X$. R is called *reflexive* if $(x, x) \in R$ for each $x \in X$. It is called symmetric if $(x, y) \in R \Rightarrow (y, x) \in R$. It is transitive if $(x, y), (y, z) \in R \Rightarrow (x, z) \in R$. A relation that is reflexive, symmetric and transitive is called an *equivalence relation*. The *equivalence class* of an element $x \in X$ is the set $[x] = \{y \in X : (x, y) \in R\}$.