Problem 0: An integer $x \in \mathbb{Z}$ is called even if $x=2 k$ for some integer $k \in \mathbb{Z}$, and it is called odd if $x=2 k+1$ for some $k \in \mathbb{Z}$. You may use the fact that every integer is either even or odd (but never both).
a) Show that the product of two odd integers is odd.
b) We say an integer $d \neq 0$ divides an integer $a \in \mathbb{Z}$ if there exists an integer $k \in Z$ with $d k=a$. Let $a \in \mathbb{Z}$. Show that if 5 divides $2 a$, then 5 divides a.
c) Prove that for any $n \in \mathbb{Z}, 5 n^{2}+3 n+7$ is odd.
d) Let $a, b, c \in \mathbb{Z}$ with $a^{2}+b^{2}=c^{2}$. Show either a is even or b is even.
e) Show every odd integer is the difference of two squares.

You must get your solution to Problem 0 approved by the instructor at your table.

Problem 1: A real number $r \in \mathbb{R}$ is called rational if there exist integers $a, b \in \mathbb{Z}$ with $b \neq 0$ such that $r=a / b$. It is called irrational otherwise.
a) Show $\sqrt{2}$ is irrational.
b) Prove that the product of rational numbers must be rational, while the product of irrational numbers may be rational or irrational. (If you claim a number is irrational, prove it!).

Problem 2: Let $X=\{n \in \mathbb{Z}: n \geq 2\}$. For $k \geq 2$, define $X_{k}=\{k n: n \in X\}$. What is the set $X \backslash \cup_{k=2}^{\infty} X_{k}$? Prove your claim.

Problem 3: For a set X, define the diagonal of the set to be the subset of $X \times X$ given by $\Delta(X)=$ $\{(i, i) \in X \times X: i \in X\}$.

A (simple undirected) graph is an ordered pair $G=(V, E)$, where V is a set, and $E \subset V \times V$ is a subset with $(i, j) \in E \Longleftrightarrow(j, i) \in E$, and $E \cap \Delta(V)=\emptyset$. The elements of V are called vertices, and the elements of E are called edges.
a) (Conceptual) Explain what the conditions on the set E mean.
b) (Conceptual) The degree $\delta(i)$ of a vertex $i \in V$ is, intuitively, the number of edges touching that vertex. Write down a formal definition of $\delta(i)$ by writing it as the size of a particular subset of E. Use set-builder notation similar to the definitions seen above. Recall that if X is a set, $|X|$ denotes its cardinality (size).
c) There are 9 people at a party. Show that it is impossible for each of them to be friends with exactly 3 other people at the party (assuming friendship is always mutual).

Challenge Topic - Group Actions

A binary operation $*$ on a set X is a function $*: X \times X \rightarrow X$. For $*(a, b)$, we write $a * b$. A binary operation is associative if $*(*(a, b), c)=*(a, *(b, c))$, i.e. $(a * b) * c=a *(b * c)$.

An identity element $e \in X$ is an element such that for each $x \in X$, we have $e * x=x * e=x$. An element $y \in X$ is called an inverse of $x \in X$ if $y * x=x * y$ is an identity element.

A group is a set G along with a binary operation $*$ such that $*$ is associative, G has an identity element, and each $g \in G$ has an inverse. We write $(G, *)$ or simply G for the group.

1. Let $(G, *)$ be a group. Show that if $e, e^{\prime} \in G$ are identity elements, then $e=e^{\prime}$. Show if $y, y^{\prime} \in X$ are inverses of $x \in X$, then $y=y^{\prime}$.
2. Let X be a set, and define $\operatorname{Sym}(X)=\{f: X \rightarrow X \mid f$ is a bijection $\}$. Show $\operatorname{Sym}(X)$ with the operation of function composition is a group. For $|X|$ finite of size n, what is $|\operatorname{Sym}(X)|$?
3. Let G and H be groups. A group homomorphism is a function $f: G \rightarrow H$ such that $f(g * h)=$ $f(g) * f(h)$. Show $f\left(e_{G}\right)=e_{H}$ (identity maps to identity).
4. An action of a group G on a set X is a homomorphism $\phi: G \rightarrow \operatorname{Sym}(X)$. For $g \in G, x \in X$, we write $g . x$ for $\phi(g)(x)$.

The stabilizer of $x \in X$ under a group action is written as $G_{x}=\{g \in G: g \cdot x=x\} \subset G$. Show G_{x} is a subgroup of G. (A subset $H \subset G$ is a subgroup if the group operation on G can be restricted to an operation on H, and H is a group with respect to this operation.)
5. Let $H \subset G$ be a subgroup and $g \in G$ an element. Define the (left) coset $g H$ as $g H=\{g h: h \in H\}$. Set up an equivalence relation ${ }^{4}$ on G whose equivalence classes are precisely the cosets, and conclude the cosets partition G. We write $G / H=\{g H: g \in G\}$ as the set of cosets.
6. The orbit of an element $x \in X$ is written as $G \cdot x=\{g . x \in X \mid g \in G\}$. Prove the Orbit-Stabilizer Theorem: if G is a finite group and X is a finite set, then

$$
\frac{|G|}{\left|G_{x}\right|}=|G \cdot x|
$$

for each $x \in X$.
Hereafter, we assume $|G|$ and $|X|$ are finite.
7. Show that the orbits of a group action of G on set X partition X. Show that the number of orbits is precisely $\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|$, where

$$
X^{g}=\{x \in X \mid g \cdot x=x\}
$$

8. An action of G on a set X is called transitive if $G \cdot x=X$ for some $x \in X$. Show that this implies $G . y=X$ for any $y \in X$.
9. For $H \subset G$ a subgroup, G acts naturally on G / H via $k \cdot(g H)=(k g) H$, for $k, g \in G$. Show that this is well-defined (i.e. if $g H=g^{\prime} H$, then $(k g) H=\left(k g^{\prime}\right) H$). Show that this action is transitive.
10. Show that if G acts transitively on a set X, we may find a subgroup $H \subset G$ and a bijection $f: X \rightarrow$ G / H with $f(g \cdot x)=g . f(x)$ for each $g \in G$ and $x \in X$.
[^0]
[^0]: ${ }^{4}$ A relation on a set X is a subset $R \subset X \times X . R$ is called reflexive if $(x, x) \in R$ for each $x \in X$. It is called symmetric if $(x, y) \in R \Rightarrow(y, x) \in R$. It is transitive if $(x, y),(y, z) \in R \Rightarrow(x, z) \in R$. A relation that is reflexive, symmetric and transitive is called an equivalence relation. The equivalence class of an element $x \in X$ is the set $[x]=\{y \in X:(x, y) \in R\}$.

 Exercise: Show the collection of equivalence classes $\{[x]: x \in X\}$ (as defined above) is a partition of X.

