Point Mass Geometry II

April 2, 2020

Warm-up problems

Use point mass geometry to solve the following problems.

1. The base $A B C D$ of a pyramid $F A B C D$ is a parallelogram. The plane α intersects $A F, B F, C F$ and $D F$ at points $A_{1}, B_{1}, C_{1}, D_{1}$ respectively. Given that

$$
\frac{\left|A A_{1}\right|}{\left|A_{1} F\right|}=2, \quad \frac{\left|B B_{1}\right|}{\left|B_{1} F\right|}=5, \quad \frac{\left|C C_{1}\right|}{\left|C_{1} F\right|}=10,
$$

find the ratio $r=\frac{\left|D D_{1}\right|}{\left|D_{1} F\right|}$.
Let $O=A C \cap B D$. Let K be the point of intersection of $F O$ and the plane α. Use the following plan to solve the problem.
(a) Notice that K is the point of intersection of $F O$ and $A_{1} C_{1}$.

- Place point masses at A and F in such a way that A_{1} is their center of mass.
- Place point masses at F and C in such a way that C_{1} is their center of mass.
- Point K is the center of mass of the system of these 4 masses (two of which are placed at F). Use this to find the ratio $|F K|:|K O|$.
(b) Notice that K is also the point of intersection of $F O$ and $B_{1} D_{1}$. Let r be the ratio $r=\frac{\left|D D_{1}\right|}{\left|D_{1} F\right|}$.
- Place point masses at points B and F in such a way that B_{1} is their center of mass.
- Place point masses at F and D in such a way that D_{1} is their center of mass.
- Point K is the center of mass of the system of these 4 masses (two of whcih are placed at F). Use the ratio $|F K|:|K O|$ that you found in part (a) of the problem to determine r.

Solution:

a) Put masses $1 \mathrm{~A}, 2 \mathrm{~F}, 1 \mathrm{C}, 10 \mathrm{~F}$ so that A_{1}, C_{1} are the respective centers of mass. Then K is the center of mass of this system, which is computed using $2 O$ and $12 F$ so we have that $|F K|:|K O|=1: 6$.
b) Put masses 1B, 5F, 1D, rF, giving us $2 O,(5+r) F$. By the previous part, this must result in a ratio $|F K|:|K O|=1: 6$, so therefore $2: 5+r=2: 12$, giving us $r=7$.
2. Let $L \in A C$ and $M \in B C$ be the points on the sides of $\triangle A B C$ such that

$$
|C L|=\alpha \cdot|C A|, \quad|C M|=\beta \cdot|C B|, \quad \text { where } 0<\alpha, \beta<1) .
$$

Let $P=A M \cap B L$. Find the ratio $\frac{|A P|}{|A M|}$.
Solution: Assign masses $1 C, \frac{\alpha}{1-\alpha} A, \frac{\beta}{1-\beta} B$ which gives the right points L and M. Then we have that $\frac{|A P|}{|A M|}=\frac{\frac{1}{1-\beta}}{\frac{1}{1-\alpha}+\frac{1}{1-\beta}}=\frac{1-\alpha}{1-\alpha \beta}$.

Center of mass via vectors

- Let $Z=Z\left(m_{1} A, m_{2} B\right)$ be the center of mass of point masses m_{1} and m_{2} placed at points A and B. Then the law of levers $m_{1} d_{1}=m_{2} d_{2}$ can be written as

$$
m_{1}\left|\overrightarrow{Z A_{1}}\right|=m_{2}\left|\overrightarrow{Z A_{2}}\right| .
$$

- Since the vectors $\overrightarrow{Z A_{1}}$ and $\overrightarrow{Z A_{2}}$ have opposite directions, it follows that

$$
m_{1} \overrightarrow{Z A_{1}}+m_{2} \overrightarrow{Z A_{2}}=0 .
$$

This condition can be taken as the definition of the center of mass of the system of two points. In the case when there are more then two masses, we get the following

Definition.

The center of mass of the system of n point masses $m_{1} A_{1}, m_{2} A_{2}, \ldots m_{n} A_{n}$ is the point Z such that

$$
m_{1} \overrightarrow{Z A_{1}}+m_{2} \overrightarrow{Z A_{2}}+\ldots+m_{n} \overrightarrow{Z A_{n}}=0
$$

1. Show that if $Z=Z\left(m_{1} A_{1}, m_{2} A_{2}\right)$, then for any point O we have

$$
\overrightarrow{O Z}=\frac{m_{1} \overrightarrow{O A_{1}}+m_{2} \overrightarrow{O A_{2}}}{m_{1}+m_{2}} .
$$

Solution: We have that $\overrightarrow{O A_{1}}=\overrightarrow{O Z}+\overrightarrow{Z A_{1}}$ and similarly $\overrightarrow{O A_{2}}=$ $\overrightarrow{O Z}+\overrightarrow{Z A_{2}}$. Then substituting this in to $\frac{m_{1} \overrightarrow{O A_{1}+m_{2}} \overrightarrow{m_{1}+m_{2}} \overrightarrow{A_{2}}}{}$, we get $\frac{\left(m_{1}+m_{2}\right) \overrightarrow{O Z}_{+m_{1}} \overrightarrow{Z A_{1}}+m_{2} \overrightarrow{Z A_{2}}}{m_{1}+m_{2}}=\frac{\left(m_{1}+m_{2}\right) \overrightarrow{O Z}}{m_{1}+m_{2}}=\overrightarrow{O Z}$ since Z is the center of mass of $m_{1} A_{1}, m_{2} A_{2}$.
2. Suppose that for any point O on the plane and a point Z the equality above holds. Is it true that Z is the center of mass of $m_{1} A_{1}$ and $m_{2} A_{2}$?
Solution: Choose $O=Z$, then we get that $\overrightarrow{0}=\overrightarrow{Z Z}=\frac{m_{1} \overrightarrow{Z A_{1}}+m_{2} \overrightarrow{Z A_{2}}}{m_{1}+m_{2}}$, and so multiplying by $m_{1}+m_{2}$ we see that Z is the center of mass.
3. Let G be the point of intersection of medians of $\triangle A B C$. Find $\overrightarrow{A G}$ in terms of $\overrightarrow{A C}$ and $\overrightarrow{A B}$.
Solution: Complete the triangle into a parallelogram by attaching $\overrightarrow{A C}$ to point B. By assigning a mass of 1 to the vertices A, B, and C , and calling A_{1} the midpoint of $\overrightarrow{B C}$, we get that $|A G|:\left|G A_{1}\right|=2: 1$, and so if we look at the diagonal of the parallelogram going through A , we have that $\overrightarrow{A G}$ is $\frac{1}{3}$ the length, which is the vector $\overrightarrow{A B}+\overrightarrow{A C}$. Therefore, $\overrightarrow{A G}=\frac{1}{3}(\overrightarrow{A B}+\overrightarrow{A C})$.
4. Let C be the point on a segment $A B$ such that $|A C|:|C B|=2: 7$. Expess this fact using the notion of the center of mass. Express the same fact using vectors.
Solution: C is the center of mass of 7A and 2B. In terms of vectors, we have that $7 \overrightarrow{A C}+2 \overrightarrow{B C}=0$.
5. Let G and G_{1} be the centers of mass of $\triangle A B C$ and $\triangle A_{1} B_{1} C_{1}$ respectively. Show that

$$
\overrightarrow{G G_{1}}=\frac{1}{3}\left(\overrightarrow{A A_{1}}+\overrightarrow{B B_{1}}+\overrightarrow{C C_{1}}\right) .
$$

Solution: Note that $\overrightarrow{G G_{1}}=\overrightarrow{G A}+\overrightarrow{A A_{1}}+\overrightarrow{A_{1} G_{1}}=\overrightarrow{G B}+\overrightarrow{B B_{1}}+\overrightarrow{B_{1} G_{1}}=$ $\overrightarrow{G C}+\overrightarrow{C C_{1}}+\overrightarrow{C_{1} G_{1}}$. Therefore, $3 \overrightarrow{G G_{1}}=(\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C})+\left(\overrightarrow{A A_{1}}+\overrightarrow{B B_{1}}+\right.$ $\left.\overrightarrow{C C_{1}}\right)+\left(\overrightarrow{A_{1} G_{1}}+\overrightarrow{B_{1} G_{1}}+\overrightarrow{C_{1} G_{1}}\right)$. The first and third terms are both 0 since G and G_{1} are the centers of mass of $\triangle A B C, \triangle A_{1} B_{1} C_{1}$, respectively. Therefore, dividing by 3 , we have that $\overrightarrow{G G_{1}}=\frac{1}{3}\left(\overrightarrow{A A_{1}}+\overrightarrow{B B_{1}}+\overrightarrow{C C_{1}}\right)$.

Negative masses

The same definition of the center of mass works if some (or all) of the masses in the system are negative.

Definition.

Let $m_{1} A_{1}$ and $m_{2} A_{2}$ be two point masses. Assuming that $m_{1}+m_{2} \neq 0$, the center of mass of this system $Z=Z\left(m_{1} A_{1}, m_{2} A_{2}\right)$ lies on the line $A_{1} A_{2}$ so that

$$
\left|m_{1}\right| \cdot d_{1}=\left|m_{2}\right| \cdot d_{2}
$$

where $d_{1}=\left|\overrightarrow{Z A_{1}}\right|$ and $d_{2}=\left|\overrightarrow{Z A_{2}}\right|$.
The center of mass Z lies between A_{1} and A_{2} if and only if the masses have the same sign (i.e., both are positive or both are negative).

1. Show that if $A B C D$ is a parallelogram, then $m D=Z(m A,(-m) B, m C)$.

Solution: Let O be the midpoint of AC , then we have that $Z=$ $Z(m A,(-m) B, m C)=Z(2 m O,(-m) B)$. This must lie on the line going through $O B$ and satisfy $2 m|O Z|=m|B Z|$. So we are looking for a point outside of the segment (since the masses have opposite signs) such that $2|O Z|=|B Z| . \mathrm{D}$ is exactly this point, since O is the midpoint of BD . Moreover, this has mass $2 m+(-m)=m$.
2. The base of a pyramid $S A B C D$ is a parallelogram $A B C D$. A plane α intersects the sides $S A, S B, S C$ and $S D$ at points $A_{1}, B_{1}, C_{1}, D_{1}$ respectively. Given that $\left|S A_{1}\right|=\frac{1}{3}|S A|,\left|S B_{1}\right|=\frac{1}{5}|S B|$ and $\left|S C_{1}\right|=\frac{1}{4}|S C|$, find the ratio $\left|S D_{1}\right| /|S D|$ (use the previous problem).
Solution: Place masses 1A, 2S, (-1)B, (-4)S, 1C, 3S. Then the centers of mass of the pairs is A_{1}, B_{1}, C_{1}, and so their center of mass is the center of mass of the system and lies on the place α. If instead we take the center of mass of $1 \mathrm{~A},(-1) \mathrm{B}$, and 1 C , then by the previous problem we get 1D. Taking the center of mass of $2 \mathrm{~S},(-4) \mathrm{S}$, and 3 S then we get 1 S . Therefore, the center of mass of the system lies on SD and also on α, and so it is the point D_{1}. Therefore, $\left|S D_{1}\right| /|S D|=1 / 2$.
3. Solve problem 1 from page 1 using masses of different signs. Which solution do you prefer?

Barycentric coordinates

- Let M be a point inside of $\triangle A B C$. One can find masses m_{1}, m_{2}, m_{3} so that $M=Z\left(m_{1} A, m_{2} B, m_{3} C\right)$;
- The masses m_{1}, m_{2}, m_{3} are defined up to a constant factor $k \neq 0: Z\left(k m_{1} A, k m_{2} B, k m_{3} C\right)=$ $Z\left(m_{1} A, m_{2} B, m_{3} C\right)$;
- Define k so that the sum of masses equals to 1 .

Definition of barycentric coordinates

For any point M inside of $\triangle A B C$ there are positive numbers $\mu_{1}, \mu_{2}, \mu_{3}$ so that

- $\mu_{1}+\mu_{2}+\mu_{3}=1$;
- $M=Z\left(\mu_{1} A, \mu_{2} B, \mu_{3} C\right)$.

These numbers are called the barycentric coordinates (or, B-coordinates) of M with respect to $\triangle A B C$.

Warm-up problems:

1. Find the barycentric coordinates of each of the vertices.

Solution: $\mathrm{A}=(1,0,0), \mathrm{B}=(0,1,0), \mathrm{C}=(0,0,1)$
2. Find the point with barycentric coordinates with respect to $\triangle A B C$ are equal to $(1 / 2,1 / 2,0)$.
Solution: It is the midpoint of the side AB .
3. Find the barycentric coordinates of the point of intersection of medians.

Solution: The point is the center of mass of the triangle with equal masses on the vertices, so $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.
4. Let $\mu_{1}, \mu_{2}, \mu_{3}$ be the barycentric coordinate of a point M with respect to $\triangle A B C$. Prove the following statements:
(a) M lies on the line through points A and B if and only if $\mu_{3}=0$;

Solution: If M lies on the line through A and B , then $|A M|:|M B|=k$, and we have that this corresponds to putting masses $\mathrm{kA}, 1 \mathrm{~B}$, and 0 C (up to some signs), so we have that the barycentric coordinates are $\left(\frac{k}{k+1}, \frac{1}{k+1}, 0\right)$, so $\mu_{3}=0$.
If $\mu_{3}=0$, then have that $\mu_{1} \overrightarrow{A M}+\mu_{2} \overrightarrow{B M}=0$, meaning that A, M, and B are collinear.
(b) M lies on the segment $A B$ if and only if $\mu_{1}, \mu_{2}>0$ and $\mu_{3}=0$.

Solution: By the previous problem, it suffices to assume M is on the line through A and B and $\mu_{3}=0$.
Now if $\mu_{1}, \mu_{2}>0$ then we have that M is the center of mass of two masses at A and B of the same sign, so therefore M must be on the segment $A B$.
If M lies on the segment $A B$, then again we have that μ_{1}, μ_{2} have the same sign, and since they add up to 1 , they must both be positive.
5. Draw a triangle $\triangle A B C$ and mark the following points with given barycentric coordinates: $M=(1 / 2,1 / 4,1 / 4), N=(-1,2,0)$.

Solution: A triangle is not drawn but we describe the points. The point M is the center of mass of a triangle with masses $2 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}$. Therefore, M is the midpoint of the median going through A .
N is the center of mass of $(-1) \mathrm{A}$ and 2 B , so it is on the line going through A and B . N is the point outside the line segment AB , on the side of B , such that $|N B|=|A B|$. In other words, B is the midpoint of the segment NA.
6. Let $M \in B C$ be such that $|B M|=\frac{1}{3}|B C|$. Let $N \in A B$ be such that $|A N|=\frac{1}{3}|A B|$. Find the barycentric coordinates of the point of intersection of $A M$ and $C N$.
Solution: We have that the point of intersection is the center of mass of 2 B , 1 C , and 1A. Therefore the barycentric coordinates are $\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$.

Problems:

1. Show that the numbers $\mu_{1}, \mu_{2}, \mu_{3}$ satisfying conditions in the definition of barycentric coordinates exist and are unique for any point M on the plane. (Hint: Use the fact that M is the center of mass of A, B, C if and only if for any point O we have

$$
\overrightarrow{O M}=\mu_{1} \overrightarrow{O A}+\mu_{2} \overrightarrow{O B}+\mu_{3} \overrightarrow{O C}
$$

Choose point O in a smart way to prove the statement).
Solution: First we prove existence. It suffices to find masses for A, B, and C to make M the center of mass, because then you just divide by the total mass to get the barycentric coordinates. If M is on the line through B and C , then we have already seen that we can find barycentric coordinates for M. Otherwise, we can place a mass 1 A and then solve for $m_{1} B, m_{2} C$. Then we are looking to solve the equation $0=\overrightarrow{M A}+m_{1} \overrightarrow{M B}+m_{2} \overrightarrow{M C}$, or simply $\overrightarrow{A M}=m_{1} \overrightarrow{M B}+m_{2} \overrightarrow{M C}$. Writing the vectors in planar coordinates makes this a 2 by 2 system of linear equations which we can solve because the triangle $\triangle A B C$ is non degenerate and M is not on the line through A and B . Then the barycentric coordinates of M are $\frac{1}{1+m_{1}+m_{2}}\left(1, m_{1}, m_{2}\right)$.
To prove uniqueness, we use the hint. If there were another set of barycentric coordinates $\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}, \mu_{3}^{\prime}\right)$ then choosing $O=A$, they would also satisfy $\mu_{1}^{\prime} \overrightarrow{A M}=$ $\mu_{2}^{\prime} \overrightarrow{A B}+\mu_{3}^{\prime} \overrightarrow{A C}$. If M is on the line through B and C , we have already seen that the barycentric coordinates are unique. If M is not on that line, then we can divide through by μ_{1}^{\prime}, giving us $A M=\frac{1}{\mu_{1}^{\prime}}\left(\mu_{2}^{\prime} \overrightarrow{A B}+\mu_{3}^{\prime} \overrightarrow{A C}\right)$. But the first set of barycentric coordinates also satisfies this, so we have that $\frac{1}{\mu_{1}^{\prime}}\left(\mu_{2}^{\prime} \overrightarrow{A B}+\mu_{3}^{\prime} \overrightarrow{A C}\right)=\frac{1}{\mu_{1}}\left(\mu_{2} \overrightarrow{A B}+\mu_{3} \overrightarrow{A C}\right)$. This gives us that $\mu_{1} \mu_{2}^{\prime}-\mu_{1}^{\prime} \mu_{2}=0$ and $\mu_{1} \mu_{3}^{\prime}-\mu_{1}^{\prime} \mu_{3}=0$. Using this, together with the fact that each set must sum to 1 , gives us that they are in fact the same.
2. Based on the previous problem, describe a (graphical) way to determine the barycentric coordinates of any point M with respect to a given triangle $\triangle A B C$.

Solution: If M lies on one of the sides, then we have already seen how to find the barycentric coordinates. If it doesn't, then let K be the point where the line through A and M intersects the line through B and C . Place masses $m_{2} B, m_{3} C$ such that K is their center of mass. Then place a mass $m_{1} A$ such that M is the center of mass of $m_{1} A,\left(m_{2}+m_{3}\right) K$. Then our barycentric coordinates for M are simply $\left(\frac{m_{1}}{m_{1}+m_{2}+m_{3}}, \frac{m_{2}}{m_{1}+m_{2}+m_{3}}, \frac{m_{3}}{m_{1}+m_{2}+m_{3}}\right)$.
3. Find the barycentric coordinates of the point of intersection of altitudes of acute triangle $\triangle A B C$ given that its sides have lengths a, b, c and the angles are equal to α, β, γ.
Solution: Using trigonometry with the altitudes, we can find the lengths of all of the line segments on the perimeter. Making these into ratios, we get the following system of masses: $(a \cos \beta \cos \gamma) A,(b \cos \alpha \cos \gamma) B,(c \cos \alpha \cos \beta) C$. Then if we divide by the sum of the masses, $s=a \cos \beta \cos \gamma+b \cos \alpha \cos \gamma+c \cos \alpha \cos \beta$, we get the barycentric coordinates $\left(\frac{a \cos \beta \cos \gamma}{s}, \frac{b \cos \alpha \cos \gamma}{s}, \frac{c \cos \alpha \cos \beta}{s}\right)$.
4. Let $\left(m_{1}, m_{2}, m_{3}\right)$ and $\left(n_{1}, n_{2}, n_{3}\right)$ be the barycentric coordinates of points M and N respectively. Find the barycentric coordinates of the midpoint of the segment $M N$.
Solution: The midpoint of the segment MN is the center of mass of 1 M and 1 N , which are each the center of mass of their respective triangles with masses equal to barycentric coordinates. Therefore, the midpoint is the center of mass of $\left(m_{1}+n_{1}\right) A,\left(m_{2}+n_{2}\right) B,\left(m_{3}+n_{3}\right) C$. It follows that the barycentric coordinates are $\left(\frac{m_{1}+n_{1}}{2}, \frac{m_{2}+n_{2}}{2}, \frac{m_{3}+n_{3}}{2}\right)$.
5. (Barycentric coordinates as areas): Let P be a point inside of $\triangle A_{1} A_{2} A_{3}$. Let S, S_{1}, S_{2}, S_{3} be the areas of triangles $\triangle A_{1} A_{2} A_{3}, \triangle P A_{2} A_{3}, \triangle P A_{1} A_{3}$ and $\triangle P A_{1} A_{2}$ respectively. Then show that the barycentric coordinates of P are:

$$
\mu_{1}=\frac{S_{1}}{S}, \quad \mu_{2}=\frac{S_{2}}{S}, \quad \mu_{3}=\frac{S_{3}}{S}
$$

(In other words, if $\triangle A B C$ has unit area, P is the center of mass of three masses positioned at the vertices where the masses are chosen proportinately to indicated areas).
Solution: Since barycentric coordinates are unique (Exercise 1), it suffices to show that $\frac{S_{1}}{S}=\mu_{1}$. Then by relabeling the vertices (or the same proof) the statement will hold for μ_{2} and μ_{3}.
Let $A_{2} A_{3}$ be the base for both $\triangle A_{1} A_{2} A_{3}$ and $\triangle P A_{2} A_{3}$. Also, let B be the center of mass of $\mu_{2} A_{2}, \mu_{3} A_{3}$. Then we have that P lies on the line $A_{1} B$. Specifically, P is the center of mass of $\mu_{1} A_{1}$ and $\left(\mu_{2}+\mu_{3}\right) B$. By similar triangles, the ratio of the heights of the smaller triangle to the bigger one is the same as the ratio $|P B|:\left|A_{1} B\right|$. But this ratio is simply $\mu_{1}: 1$. Therefore, we have that $\frac{S_{1}}{S}=\mu_{1}$.
6. Find the barycentric coordinates of the center of inscribed circle of $\triangle A B C$. (Hint: use interpretation of barycentric coordinates in terms of areas; see the previous problem).
Solution: We compute the areas S_{1}, S_{2}, S_{3}. Drawing these triangles, we see that the radius of the circle, r, is the height of all three. The bases are the sides of the triangle, since it is perpendicular to the radius. Therefore, $2 S_{1}=r|B C|, 2 S_{2}=r|A C|, 2 S_{3}=|A B|$. Let $P=|A B|+|B C|+|A C|$ be the perimeter of the triangle. Since the barycentric coordinates are just the normalized (sum to one) coordinates of any scalar multiple, we have they are given by $\left(\frac{|B C|}{P}, \frac{|A C|}{P}, \frac{|A B|}{P}\right)$.
7. Let B_{1}, B_{2}, B_{3} be points on the sides of triangle $\triangle A_{1} A_{2} A_{3}$ such that

$$
\frac{\left|A_{2} B_{1}\right|}{\left|A_{2} A_{3}\right|}=\frac{\left|A_{3} B_{2}\right|}{\left|A_{3} A_{1}\right|}=\frac{\left|A_{1} B_{3}\right|}{\left|A_{1} A_{2}\right|}=\frac{1}{4} .
$$

Let S be the area of triangle $A B C$. Find the area of the triangle $P Q R$ bounded by the lines $A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}$.
Solution: Let $P=A_{1} B_{1} \cap A_{3} B_{3}, Q=A_{1} B_{1} \cap A_{2} B_{2}$, and $R=A_{2} B_{2} \cap$ $A_{3} B_{3}$. Then the area of the triangle $P Q R$ is equal to $S-\operatorname{Area}\left(P A_{1} A_{3}\right)-$ $\operatorname{Area}\left(Q A_{1} A_{2}\right)-\operatorname{Area}\left(R A_{2} A_{3}\right)$. With point mass geometry, we have that the barycentric coordinates for P are $\left(\frac{9}{13}, \frac{3}{13}, \frac{1}{13}\right)$, those for Q are $\left(\frac{1}{13}, \frac{9}{13}, \frac{3}{13}\right)$, and those for R are $\left(\frac{3}{13}, \frac{1}{13}, \frac{9}{13}\right)$. Then we have, by exercise 5 , that $\operatorname{Area}\left(P A_{1} A_{3}\right)=$ $S \mu_{P, 2}=S \frac{3}{13}, \operatorname{Area}\left(Q A_{1} A_{2}\right)=S \mu_{Q, 3}=S \frac{3}{13}$, and $\operatorname{Area}\left(R A_{2} A_{3}\right)=S \mu_{R, 1}=$ $S \frac{3}{13}$. Therefore, the area of $P Q R$ is $S\left(1-\frac{9}{13}\right)=\frac{4}{13} S$.

The problems are taken from:
M. Bulk, V. Boltyanskij, "Geometry of Mass", 1987 (in Russian)

