Point Mass Geometry (part II)

October 31, 2008

In each of the problems below the key is to put some masses at some of the points in the problem

More problems:

1. The base $A B C D$ of a pyramid $F A B C D$ is a parallelogram. The plane α intersects $A F, B F, C F$ and $D F$ at points $A_{1}, B_{1}, C_{1}, D_{1}$ respectively. Given that

$$
\frac{\left|A A_{1}\right|}{\left|A_{1} F\right|}=2, \quad \frac{\left|B B_{1}\right|}{\left|B_{1} F\right|}=5, \quad \frac{\left|C C_{1}\right|}{\left|C_{1} F\right|}=10
$$

find the ratio $x=\frac{\left|D D_{1}\right|}{\mid D_{1} F}$.
2. Let $L \in A C$ and $M \in B C$ be the points on the sides of $\triangle A B C$ so that

$$
|C L|=\alpha|C A|, \quad|C M|=\beta|C B| \quad(0<\alpha, \beta<1)
$$

Let $P=A M \cap B L$. Find the ratio $\frac{|A P|}{\mid A M}$.

Center of Mass via vectors:

- Let $Z=Z\left(m_{1} A, m_{2} B\right)$. Then the condition $m_{1} d_{1}=m_{2} d_{2}$ can be written as

$$
m_{1}\left|\overrightarrow{Z A_{1}}\right|=m_{2}\left|\overrightarrow{Z A_{2}}\right|
$$

Since $\overrightarrow{Z A_{1}}$ and $\overrightarrow{Z A_{2}}$ have opposite directions, it follows that

$$
m_{1} \overrightarrow{Z A_{1}}+m_{2} \overrightarrow{Z A_{2}}=0
$$

- This condition can be taken as the definition of the center of mass of the system of two points.

In the case when there are more then two masses, we get the following:
The center of mass of the system of n point masses $m_{1} A_{1}, m_{2} A_{2}, \ldots m_{n} A_{n}$ is the point Z such that

$$
m_{1} \overrightarrow{Z A_{1}}+m_{2} \overrightarrow{Z A_{2}}+\ldots+m_{n} \overrightarrow{Z A_{n}}=0
$$

1. Show that if $Z=Z\left(m_{1} A_{1}, m_{2} A_{2}\right)$, then for any point O we have

$$
\overrightarrow{O Z}=\frac{m_{1} \overrightarrow{O A_{1}}+m_{2} \overrightarrow{O A_{2}}}{m_{1}+m_{2}}
$$

Is it true that if for any point O and a point Z the equality above holds, then Z is the center of mass of A_{1} and A_{2} ?
2. Let G be the point of intersection of medians of $\triangle A B C$. Find $\overrightarrow{A G}$ in terms of $\overrightarrow{A C}$ and $\overrightarrow{A B}$.
3. Let C be the point on a segment $A B$ such that $|A C|:|C B|=2: 7$. Expess this fact using the notion of the center of mass. Express the same fact using vectors.
4. Let G and G^{\prime} be the centers of mass of $\triangle A B C$ and $\triangle A_{1} B_{1} C_{1}^{\prime}$ respectively. Show that

$$
\overrightarrow{G G_{1}}=\frac{1}{3}\left(\overrightarrow{A A_{1}}+\overrightarrow{B B_{1}}+\overrightarrow{C C_{1}}\right)
$$

Negative masses:

The same definition of the center of mass works if some (or all) of the masses in the system are negative.

- Let $m_{1} A_{1}$ and $m_{2} A_{2}$ be two point masses. Assuming that $m_{1}+m_{2} \neq 0$, the center of mass of this system $Z=Z\left(m_{1} A_{1}, m_{2} A_{2}\right)$ lies on the line $A_{1} A_{2}$ so that

$$
\left|m_{1}\right| \cdot d_{1}=\left|m_{2}\right| \cdot d_{2}
$$

where $d_{1}=\left|Z A_{1}\right|$ and $d_{2}=\left|Z A_{2}\right|$. The center of mass Z lies between A_{1} and A_{2} if and only if the masses have the same sign (i.e., both are positive or both are negative).

1. Show that if $A B C D$ is a parallelogram, then $m D=Z(m A,(-m) B, m C)$.
2. The base of a pyramid $S A B C D$ is a parallelogram $A B C D$. A plane α intersects the sides $S A, S B, S C$ and $S D$ at points $A_{1}, B_{1}, C_{1}, D_{1}$ respectively. Given that $\left|S A_{1}\right|=\frac{1}{3}|S A|,\left|S B_{1}\right|=\frac{1}{5}|S B|$ and $\left|S C_{1}\right|=\frac{1}{4}|S C|$, find the ratio $\left|S D_{1}\right| /|S D|$ (use the previous problem).

Barycentric coordinates:

- Let M be point inside of $\triangle A B C$. One can find masses m_{1}, m_{2}, m_{3} so that $M=Z\left(m_{1} A, m_{2} B, m_{3} C\right)$;
- The masses m_{1}, m_{2}, m_{3} are defined up to a constant factor: $Z\left(k m_{1} A, k m_{2} B, k m_{3} C\right)=$ $Z\left(m_{1} A, m_{2} B, m_{3} C\right)$;
- Define k so that the sum of masses equals to 1 .

For any point M inside of $\triangle A B C$ there are positive numbers $\mu_{1}, \mu_{2}, \mu_{3}$ so that

- $\mu_{1}+\mu_{2}+\mu_{3}=1$;
- $M=Z\left(\mu_{1} A, \mu_{2} B, \mu_{3} C\right)$.

These numbers are called the baricentric coordinates (or, B-coordinates) of M with respect to $\triangle A B C$.

Warm-up problems:

1. Find the baricentric coordinates of each of the vertices.
2. Find the point whose baricentric coordinates with respect to $\triangle A B C$ are equal to $(1 / 2,1 / 2,0)$.
3. Find the baricentric coordinates of the point of intersection of medians.
4. Let $\mu_{1}, \mu_{2}, \mu_{3}$ be the baricentric coordinate of a point M with respect to $\triangle A B C$. Prove the following statements:
(a) M lies on the line trough A, B if and only if $\mu_{3}=0$;
(b) M lies on the segment $[A B]$ if and only if $\mu_{1}, \mu_{2}>0$ and $\mu_{3}=0$.
5. Draw a triangle $\triangle A B C$ and mark the following points with given baricentric coordinates: $M(1 / 2,1 / 4,1 / 4), M(-1,2,0)$.
6. Let $M \in B C$ be such that $|B M|=1 / 3|B C|$. Let $N \in A B$ be such that $|A N|=\frac{1}{3}|A B|$. Find the baricentric coordinates of the point of intersection of $A M$ and $C N$.

Problems:

1. Show that the numbers $\mu_{1}, \mu_{2}, \mu_{3}$ satisfying conditions in the definition of baricentric coordinates exist and are unique for any point M on the plane. (Hint: Use the fact that M is the center of mass of A, B, C if and only if for any point P we have

$$
\overrightarrow{O M}=\mu_{1} \overrightarrow{O A}+\mu_{2} \overrightarrow{O B}+\mu_{3} \overrightarrow{O C}
$$

Choose point O in a smart way to prove the statement).
2. Based on the previous problem, describe a (graphical) way to determine the baricentric coordinates of any point M with respect to a given triangle $\triangle A B C$.
3. Find the baricentric coordinates of the point of intersection of altitudes of (acute angle) triangle $\triangle A B C$ given that it's sides have lengths a, b, c and the angles are equal to α, β, γ.
4. Let $\left(m_{1}, m_{2}, m_{3}\right)$ and $\left(n_{1}, n_{2}, n_{3}\right)$ be the baricentric coordinates of M and N respectively. Find the baricentric coordinates of the mid point of the segment $M N$.
5. (Baricentric coordinates as areas): Let P be a point inside of $\triangle A_{1} A_{2} A_{3}$. Let S, S_{1}, S_{2}, S_{3} be the areas of triangles $\triangle A_{1} A_{2} A_{3}, \triangle P A_{2} A_{3}, \triangle P A_{1} A_{3}$ and $\triangle P A_{1} A_{2}$ respectively. Then the baricentric coordinates of P are:

$$
\mu_{1}=\frac{S_{1}}{S}, \quad \mu_{2}=\frac{S_{2}}{S}, \quad \mu=\frac{S_{3}}{S}
$$

(In other words, if $\triangle A B C$ has unit area, P is the center of mass of three masses positioned at the vertices where the masses are chosen proportinately to indicated areas).
6. Find the baricentric coordinates of the center of the inscribed circle of $\triangle A B C$. (Hint: use interpretation of baricentric coordinates in terms of areas; see the previous problem).
7. Let B_{1}, B_{2}, B_{3} be points on the sides of triangle $\triangle A_{1} A_{2} A_{3}$ such that

$$
\frac{\left|A_{2} B_{1}\right|}{\left|A_{2} A_{3}\right|}=\frac{\left|A_{3} B_{2}\right|}{\left|A_{3} A_{1}\right|}=\frac{\left|A_{1} B_{3}\right|}{\left|A_{1} A_{2}\right|}=\frac{1}{4} .
$$

Let S be the area of triangle $A B C$. Find the area of the triangle $P Q R$ bounded by the lines $A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}$.

The problems are taken from:
M. Bulk, V. Boltyanskij, "Geometry of Mass", 1987 (in Russian)

