Hints for olympiad-style problems, week 2

Problem 1. Try to draw the region of the square S that corresponds to the event $1/5 \le d(P) \le 1/3$.

Problem 2. First figure out which y satisfy f(y) = 6.

Problem 3. First write down what it means for the number with the leftmost digit deleted to be 1/29 of the original number. Now notice that 10^n is never divisible by 7 for any n.

Problem 4. Use condition (3) to conclude that $f(x,y) = \frac{y}{y-x}f(x,y-x)$ whenever y > x.

Problem 5. Triangles BCA and DCM are similar.

Problem 6. Let a_n be the number of acceptable strings of length n ending in A and b_n be the number of acceptable strings of length n ending in B. Try to get recursive formulas for a_n and b_n .

Problem 7. If three numbers a, b, c have the property that none of them is more than twice as big as any other, then they form a triangle. Now use pigeonhole principle.

Problem 8. If you replace x with 90 - x, the set of three numbers in question doesn't change, so you can assume $0 \le x \le 45$. Now what is the condition for forming a triangle?

Problem 9. $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$. Use the binomial theorem.

Problem 10. Apply Problem 9 with 2n+1 in place of n and and consider the resulting expression as a polynomial in the variable θ .

Problem 11. Deduce that $\csc^2 \theta > 1/\theta^2 > \cot^2 \theta$ and apply Problem 10 with suitably chosen values of θ .

Problem 12. First prove the formula $S_n = 2^{n-1}(n+1)$.

Problem 13. The points M, P, Q, C all lie on a common circle.

Problem 14. Use the formula that if $B = (B_{i,j})$ is any $d \times d$ matrix, then

$$\det(B) = \sum_{\sigma \in \operatorname{Perm}(d)} \left(\prod_{i=1}^{d} B_{i,\sigma(i)} \right)$$

where Perm(d) is the set of all permutations of the set $\{1, 2, \dots, d\}$.