Hints for olympiad-style problems, week 2

Problem 1. Try to draw the region of the square S that corresponds to the event $1 / 5 \leq d(P) \leq 1 / 3$.
Problem 2. First figure out which y satisfy $f(y)=6$.
Problem 3. First write down what it means for the number with the leftmost digit deleted to be $1 / 29$ of the original number. Now notice that 10^{n} is never divisible by 7 for any n.

Problem 4. Use condition (3) to conclude that $f(x, y)=\frac{y}{y-x} f(x, y-x)$ whenever $y>x$.
Problem 5. Triangles BCA and DCM are similar.
Problem 6. Let a_{n} be the number of acceptable strings of length n ending in A and b_{n} be the number of acceptable strings of length n ending in B. Try to get recursive formulas for a_{n} and b_{n}.

Problem 7. If three numbers a, b, c have the property that none of them is more than twice as big as any other, then they form a triangle. Now use pigeonhole principle.

Problem 8. If you replace x with $90-x$, the set of three numbers in question doesn't change, so you can assume $0 \leq x \leq 45$. Now what is the condition for forming a triangle?

Problem 9. $(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$. Use the binomial theorem.
Problem 10. Apply Problem 9 with $2 n+1$ in place of n and and consider the resulting expression as a polynomial in the variable θ.

Problem 11. Deduce that $\csc ^{2} \theta>1 / \theta^{2}>\cot ^{2} \theta$ and apply Problem 10 with suitably chosen values of θ.
Problem 12. First prove the formula $S_{n}=2^{n-1}(n+1)$.
Problem 13. The points M, P, Q, C all lie on a common circle.

Problem 14. Use the formula that if $B=\left(B_{i, j}\right)$ is any $d \times d$ matrix, then

$$
\operatorname{det}(B)=\sum_{\sigma \in \operatorname{Perm}(d)}\left(\prod_{i=1}^{d} B_{i, \sigma(i)}\right)
$$

where $\operatorname{Perm}(d)$ is the set of all permutations of the set $\{1,2, \ldots, d\}$.

