SUCCESSIVE DIFFERENCES

BEGINNER CIRCLE 2/10/2013

1. SHAPE NUMBERS

We all know about the numbers. But what about the numbers that arise from looking
at different shapes. For instance we have the line numbers:
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which are easy to compute— the nth line number is just n
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. We also have the square
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which are also fairly easy to compute: the nth square number is just n?. But what
about the triangular numbers
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or the pentagonal numbers

P, P,

and so on? Can you find closed formulas for these?

Problem 1. Using the formula for the area of a triangle, find an approximation for
the triangular numbers. Can you make this approximation better? Explain your

method in full sentences. [ . "
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Problem 2. What is the difference between the {th triangular number and the 5th
triangular number. What about the 5th and 6th? What about the nth and n + 1th?
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Problem 3. Using the previous problem as inspiration, write each triangular number
as the sum of smaller line numbers. Explain Wh%your formulation works in full

___sentences.
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Problem 4. Take each pentagon in the pentagonal numbers and break it down into

several smaller triangles. Can you represent the pentagonal numbers as a sum of
triangular numbers?
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Problem 5. What is the difference between the 4th and 5th pentagonal numbers?
What about the 5th and 6th? Can you find a pattern? Explain in full sentences
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bers up to the 8th pentagonal number.
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Problem 7. Draw a few pictures of what the hexagonal numbers should look like

Use the same methods as in the previous 3 problems to find all of the hexagonal
numbers up to the 6th hexagonal number.
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~ Problem 8. The tetrahedral numbers are given by little pyramids with triangular
bases. Can you write each tetragonal number as a sum of triangular numbers? Write

an explanation in full sentences. \ )
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Problem 9. Using the problem above as motivation, find all of the tetrahedral num-
bers up to the 7th one.
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Problem 10 (Bonus). The Gooey Kablooie numbers are given by the pictures below.
Use the techniques that you have developed in the previous 5 problems to figure out
what the 8th Gooey Kablooie number is.
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2. SUCCESSIVE DIFFERENCES

In the warm up , we looked at sequences of numbers and tried to figure out the pattern
to the sequence. Sometimes, it is really easy for us to figure out the pattern: for
example, we all know how to figure out every number in the pattern

24,88, .

In fact, we can do even better than just figure out every number in the pattern, we
can provide a formula that computes the nth number

2n

One way to identify a pattern is to look at the successive differences of the numbers
in the pattern. Let’s give some language to describe these patterns.

Definition 1. A sequence is a bunch of numbers that come in a particular order.
When we talk about the whole sequence, we will use a capital letter. For example the
sequence of even numbers might be written as

E=246.8

When we want to refer to a specific part of this sequence, we will write the part of the
sequence that we want to talk about using lowercase letters. For example,

(’1:2

C; = 10

ey = 211

Definition 2. If we are given a sequence
A=aj.as.as....

we define the difference sequence of A (which we will write dA) to be the sequences
of all the differences of A. For example, if my sequence A is

A=92.8.5,899008...

then
dA =1.2.3.1.0.0.0.. ..

Formally, the sequence dA is given by entries

b-fj =y — A
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Problem 11. Let N be the sequence of numbers,
N=1223.4....
. What is d\'?
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Problem 12. Let S be the sequence of square numbers,
9 == 1de U 1650 5 5
What is dS?

dr= H, B, T, s

Problem 13. Find all the sequences A have the property that
dA =10,0,0,0,., .

Any A= (¢, C5C,C,.. Where
C S a “Cored” clement of
the Y“ecd ’mmnbeing,
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Problem 14. Frequently, we will want to take the difference of a sequence several
times. Let 7" be the sequence of triangular numbers (from the warm-up.) What is d7°?

What about ddT?
7
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dT=2,3,4,5, ..
d_OLT: ()171)2)/ C

Problem 15. Let A be a sequence. Suppose that I know that «; = 0, and I know that
dA =T, where T are the triangular numbers. Can you find the as, the fifth entry of

the sequence A? B )
G=T Qg‘%ﬁ:E;L4JC5)§ﬂOJ%H,
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Problem 16. Let S be the sequence of square numbers. Prove that dS = O, where O
is the sequence of odd numbers.

S— 1,4, 16,25, « -+ 452 3,5,7,9,...

| @, 42 43 qa ds !); La 1/') L%
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blem 17. We've noticed that with the triangular numbers T, that dddT = 0, and
with the square numbers, dddS = 0 (Where 0 means the sequence of all zeroes.) Show
that the sequence of cubic numbers (' have the property that

d' = ddddC =0

(Hint: There is a faster way that computing dddd(’)
8
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you find a (non-zero) sequence such that dF = F?
1
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Problem 19. Can you find a (non-zero) sequence where ddF = F?

Problem 20. Find a (non-zero) sequence that has the property that
dF = Fwith all the numbers shifted to the right by one place
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3. POLYNOMIALS

First off, what is a polynomial?

Definition 3. A polynomial f(n) is an equation made multiplying and adding to-
gether numbers, and powers some variable n. For instance, the following are all
polynomials:

347928
2837
Definition 4. The degree of a polynomial f(n) is the highest exponent that appears

in the polynomial when the polynomial is multiplied out. For instance

ne 42 29n + 34n°5 (”2 F1)(n+5)

n3 4 2n +6
has degree 3, while the polynomial
(nt 4 2n)(n® +1)
has degree G

One convenient way to make sequences is with polynomials. For example we have
already seen the sequence of squares, given by

2
—y

and the sequence of triangular numbers, which is given by

L, ]
by = =" on
T ‘) -E- 2

Our question is, which sequences are given by a polynomial?

Problem 21. Find 3 polynomials that give the sequences of Odd (0), Even (F), and
Threeven (S) numbers respectively:

0=13,579,...
E=24068.10....
P=3.6,9,12,...
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Problem 22. Can you find a polynomial that fits the sequence
ot == 1.0 Lol s

Problem 23. Can you find a polynomial that fits the sequence
A=1-1,1.15,...

As you can see, it is quite hard to find the polynomial that fits a certain number of
points! However, it is quite easy to find out sequences by looking at differences.

Problem 24. Let A and B be two different sequences. Define the sum sequence to
be the sequence where each of their entries is summed together. For example of the
sequences

A=132.54,...

B=1,1,2,2,3....

A+ B=2.4477

Can you show that

z( A+ B)=dA+dB

O(A: 29“’1) 0{£ Q5 /
d A+ B = 230;%0 ——

’_\\—\

AN+ db= 2+to0, 11, 340,741 = 250,30

11
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Problem 25. Let P be a sequence given by a polynomial of degree 2 (that is,
Pu = f(n) =an®+bn+c
for some quadratic polynomial n). Show that dP is given by a polynomial of degree 1.
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Problem 26. Let P be a sequence given by a polynomial of degree k. Explain in a few
sentences why dP is given by a polynomial of degree i — 1.
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Problem 27. Let P be a sequence given by a polynomial of degree n. Show that

(‘f”ﬁ’l =ddd...dddP = 0.
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Problem 28. Suppose I know that the sequence P starts as
2.0.8

and I know that
ddP = ()
Can you find the rest of the entries of P
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