Infinity II Homework

Advanced 1

February 4, 2020

Problem 1.

For each of the following functions $f : \mathbb{R} \to \mathbb{R}$, determine if it is injective and/or surjective:

- f(x) = x
- f(x) = -x
- f(x) = x 49
- $f(x) = x^2$
- $f(x) = x^3$
- f(x) = sin(x)

Which ones are bijections?

Problem 2.

For each of the following functions $g: \mathbb{Z} \to \mathbb{Z}$, determine if it is injective and/or surjective:

- g(n) = n + 5
- $g(n) = (n-2)^2$
- g(n) = 0
- $g(n) = n \pmod{2020}$

Which ones are bijections?

Problem 3.

Let A be a set with $n \ge 1$ elements. Prove that there are as many subsets of A with even number of elements, as there are with odd number of elements. *Hint:* Construct a bijection.

Problem 4.

Show that $\mathbb{N} \times \mathbb{N}$ is countable. That is, show that there is a bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$. Recall that $\mathbb{N} \times \mathbb{N}$ is a set of all pairs of natural numbers (a, b), $a, b \in \mathbb{N}$. Explain how would you construct such a bijection (even though you don't have to define it formally). A picture might help you, but explain your solution too. *Hint:* Recall the video that we watched. How did we show that \mathbb{Q} is countable? Can you use a similar approach?