Infinity II Homework

Advanced 1

February 4, 2020

Problem 1.

For each of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$, determine if it is injective and/or surjective:

- $f(x)=x$
- $f(x)=-x$
- $f(x)=x-49$
- $f(x)=x^{2}$
- $f(x)=x^{3}$
- $f(x)=\sin (x)$

Which ones are bijections?

Problem 2.

For each of the following functions $g: \mathbb{Z} \rightarrow \mathbb{Z}$, determine if it is injective and/or surjective:

- $g(n)=n+5$
- $g(n)=(n-2)^{2}$
- $g(n)=0$
- $g(n)=n(\bmod 2020)$

Which ones are bijections?

Problem 3.

Let A be a set with $n \geq 1$ elements. Prove that there are as many subsets of A with even number of elements, as there are with odd number of elements. Hint: Construct a bijection.

Problem 4.

Show that $\mathbb{N} \times \mathbb{N}$ is countable. That is, show that there is a bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$. Recall that $\mathbb{N} \times \mathbb{N}$ is a set of all pairs of natural numbers $(a, b), a, b \in \mathbb{N}$. Explain how would you construct such a bijection (even though you don't have to define it formally). A picture might help you, but explain your solution too. Hint: Recall the video that we watched. How did we show that \mathbb{Q} is countable? Can you use a similar approach?

