Tropical Polynomials

Los Angeles Math Circle, May 15, 2016
Bryant Mathews, Azusa Pacific University

1 Tropical Arithmetic

In tropical arithmetic, we define new addition and multiplication operations on the real numbers. The tropical sum of two numbers is their minimum:

$$
x \oplus y=\min (x, y)
$$

while the tropical product of two numbers is their sum:

$$
x \odot y=x+y
$$

1. Which of the following properties hold in tropical arithmetic?

- Addition is commutative: $x \oplus y=y \oplus x$.
- Addition is associative: $(x \oplus y) \oplus z=x \oplus(y \oplus z)$.
- An additive identity exists: There exists a real number n such that $x \oplus n=x$ for all real numbers x.

2. Let's expand our number set to include a tropical additive identity. What would be an appropriate name for this new "number"? Give appropriate definitions for the tropical sum and tropical product of this new number with a general real number x and with itself.
3. Which of the following properties hold in tropical arithmetic?

- Additive inverses exist: For each number x, there exists a number y such that $x \oplus y=n$, where n is the additive identity.
- Multiplication is associative: $(x \odot y) \odot z=x \odot(y \odot z)$.
- Multiplication is commutative: $x \odot y=y \odot x$.
- There exists a multiplicative identity: There exists a number i such that $x \odot i=x$ for all numbers x.
- Multiplicative inverses exist: For each number x not equal to the additive identity, there exists a number y such that $x \odot y=i$, where i is the multiplicative identity.
- Multiplication distributes over addition: $x \odot(y \oplus z)=x \odot y \oplus x \odot z$.

4. Complete the tropical addition and multiplication tables below.

\oplus	1	2	3	4	∞
1					
2					
3					
4					
∞					

\odot	0	1	2	3	4
0					
1					
2					
3					
4					

5. Expand and simplify $f(x)=(x \oplus 2)(x \oplus 3)$, where juxtaposition represents tropical multiplication. Then use your expansion to compute $f(1)$ and $f(4)$.

2 Tropical Polynomials

A polynomial is an expression formed by adding and/or multiplying together numbers and copies of a variable x. Every polynomial can be written in the form

$$
a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

for some nonnegative integer n and coefficients $a_{n}, \ldots, a_{2}, a_{1}, a_{0}$.
It follows from the Fundamental Theorem of Algebra that any non-constant polynomial with real coefficients can be written as a product of polynomials of degree 1 or 2 with real coefficients. For example,

$$
x^{5}+8 x^{4}+17 x^{3}-2 x^{2}-64 x-160=\left(x^{2}+2 x+5\right)(x-2)(x+4)^{2} .
$$

Over the complex numbers, any such polynomial can be factored completely into polynomials of degree 1 with complex coefficients. For the example above,

$$
x^{5}+8 x^{4}+17 x^{3}-2 x^{2}-64 x-160=(x+1-2 i)(x+1+2 i)(x-2)(x+4)^{2} .
$$

The factors can be determined by computing the roots (or the "zeros") of the polynomial. The polynomial above has roots

$$
-1+2 i,-1-2 i, 2,-4,-4 .
$$

We say that the root -4 has multiplicity 2 .
There is a quadratic formula for determining the roots of a polynomial of degree 2 , along with cubic and quartic formulas for degrees 3 and 4 . However, starting with degree 5 , there is no longer a nice formula which enables us to find the roots of every polynomial. For polynomials of large degree, we generally must settle for approximate roots, found by a computer.

A tropical polynomial is an expression formed by (tropically) adding and/or multiplying tropical numbers (i.e., real numbers or ∞) and copies of a variable x. Every tropical polynomial can be written in the form

$$
\left(a_{n} \odot x^{n}\right) \oplus \cdots \oplus\left(a_{2} \odot x^{2}\right) \oplus\left(a_{1} \odot x\right) \oplus\left(a_{0}\right)
$$

for some nonnegative integer n and coefficients $a_{n}, \ldots, a_{2}, a_{1}, a_{0}$. (Note that the exponents here represent repeated tropical multiplication.) For convenience, we represent tropical multiplication by juxtaposition, in the usual manner:

$$
a_{n} x^{n} \oplus \cdots \oplus a_{2} x^{2} \oplus a_{1} x \oplus a_{0} .
$$

Questions:

- Can tropical polynomials always be factored completely into polynomials of degree 1?
- Is there a tropical quadratic formula for finding the roots of quadratic polynomials? How about a cubic formula?
- For polynomials of large degree, must we rely on a computer to find roots, or can we do it by hand?

2.1 Tropical quadratic polynomials

6. Draw a precise graph of the tropical polynomial $f(x)=x^{2} \oplus 1 x \oplus 4$. You may find it helpful to first rewrite the tropical polynomial (as an expression involving standard operations) using the definitions of \oplus and \odot.

Now, try to factor the tropical polynomial $x^{2} \oplus 1 x \oplus 4$ into linear (degree 1) factors. In other words, find numbers r and s such that

$$
x^{2} \oplus 1 x \oplus 4=(x \oplus r)(x \oplus s) .
$$

These numbers r and s are called the roots of the tropical polynomial. (Note that we use $x \oplus r$ and $x \oplus s$ because we do not have a tropical subtraction.)

Do you notice any relationship between the graph and the factorization? Can you see the roots in the graph?
7. Graph $f(x)=-2 x^{2} \oplus x \oplus 8$, and then find a factorization of $f(x)$ in the form $a(x \oplus r)(x \oplus s)$. Can you see the roots r and s in the graph? How are the roots related to the coefficients of $f(x)$?

8. Find a tropical polynomial $f(x)$ with a value of 7 for all sufficiently large x and with roots 4 and 5 .
9. Graph $f(x)=1 x^{2} \oplus 3 x \oplus 5$, and then find a factorization in the form $f(x)=a(x \oplus r)(x \oplus s)$. How is this graph different from the previous ones? How is this factorization different from the others? How are the roots related to the coefficients of $f(x)$?

10. Graph $f(x)=2 x^{2} \oplus 4 x \oplus 4$. Find a factorization in the form $f(x)=a(x \oplus r)(x \oplus s)$, or show that one does not exist.

11. Can you find a tropical polynomial which has the same graph as $f(x)=2 x^{2} \oplus 4 x \oplus 4$, but which can be factored?

The Tropical Fundamental Theorem of Algebra says that, for every tropical polynomial $f(x)$, there is a unique tropical polynomial $\bar{f}(x)$ with the same graph (and therefore determining the same function) which can be factored into linear factors. We sometimes say "the roots of $f(x)$ " when we really mean "the roots of $\bar{f}(x)$."
12. If $f(x)=a x^{2} \oplus b x \oplus c$, then $\bar{f}(x)=a x^{2} \oplus B x \oplus c$ for some B. Find a formula for B in terms of a, b, and c. There are two different cases to consider.
13. State a tropical quadratic formula in terms of a, b, c for the roots x of a tropical polynomial $f(x)=a x^{2} \oplus b x \oplus c$ (that is, the roots of the corresponding \bar{f}). There are once again two separate cases.

2.2 Tropical cubic polynomials

14. For each cubic polynomial below,

- sketch the graph of the polynomial,
- use the graph to find the roots of the polynomial, and
- write (and expand) a product of linear factors with the same graph as the given polynomial.
a) $f(x)=x^{3} \oplus 1 x^{2} \oplus 3 x \oplus 6$

b) $g(x)=x^{3} \oplus 1 x^{2} \oplus 6 x \oplus 6$

c) $h(x)=x^{3} \oplus 6 x^{2} \oplus 6 x \oplus 6$

15. If $f(x)=a x^{3} \oplus b x^{2} \oplus c x \oplus d$, then $\bar{f}(x)=a x^{3} \oplus B x^{2} \oplus C x \oplus d$ for some B and C. With the preceding examples as a guide, find formulas for B and C in terms of a, b, c, and d.

2.3 General tropical polynomials

16. Can you guess the roots of the following polynomial?

$$
f(x)=3 x^{6} \oplus 4 x^{5} \oplus 2 x^{4} \oplus x^{3} \oplus 1 x^{2} \oplus 4 x \oplus 5
$$

17. If

$$
f(x)=a_{n} x^{n} \oplus a_{n-1} x^{n-1} \oplus \cdots \oplus a_{2} x^{2} \oplus a_{1} x \oplus a_{0}
$$

then

$$
\bar{f}(x)=a_{n} x^{n} \oplus A_{n-1} x^{n-1} \oplus \cdots \oplus A_{2} x^{2} \oplus A_{1} x \oplus a_{0}
$$

Can you find a formula for each A_{j} in terms of the a_{i} ? How about formulas for the roots $r_{1}, r_{2}, \ldots, r_{n}$? Can you find a geometric interpretation of these formulas in terms of the points $\left(-i, a_{i}\right)$, for $0 \leq i \leq n$?

