OLYMPIAD-STYLE PROBLEMS II

COLLECTED FOR THE
 LOS ANGELES MATH CIRCLE

Problem 1 (2010 AIME II Problem 2 © MAA).
A point P is chosen at random in the interior of a unit square S. Let $d(P)$ denote the distance from P to the closest side of S. Find the probability that $1 / 5 \leq d(P) \leq 1 / 3$.

Problem 2 (2002 AMC 12A ©MAA).
If $f:[-7,5] \rightarrow \mathbb{R}$ is the function whose graph is shown below, how many solutions does the equation $f(f(x))=6$ have?

Problem 3 (2006 AIME I Problem 3 © MAA).
Find the least positive integer such that when its leftmost digit is deleted, the resulting integer is $\frac{1}{29}$ of the original integer.

Problem 4 (1988 AIME © MAA).
Suppose there is a function f defined on the set of ordered pairs (x, y) of positive integers which satisfies

$$
\begin{align*}
f(x, x) & =x, \tag{1}\\
f(x, y) & =f(y, x), \quad \text { and } \tag{2}\\
(x+y) f(x, y) & =y f(x, x+y) . \tag{3}
\end{align*}
$$

Show that there is only one possible value of $f(14,52)$ and find it.
Problem 5. Consider a circle with diameter AB. Let C be a point outside of the circle. Suppose AC and BC intersect the circle at points D and M respectively. The areas of triangle DCM is $1 / 4$ of the area of triangle ACB. Find angle CBD.

Problem 6 (2008 AIME I Problem 11 © MAA).
Consider sequences that consist entirely of A 's and B 's and that have the property that every run of consecutive A 's has even length, and every run of consecutive B 's has odd length. Examples of such sequences are $A A, B$, and $A A B A A$, while $B B A B$ is not such a sequence. How many such sequences have length 14 ?

Problem 7 (2004 Manhattan Mathematical Olympiad).
Seven line segments, with lengths no greater than 10 inches, and no shorter than 1 inch, are given. Show that one can choose three of them to represent the sides of a triangle.

Problem 8 (2003 AIME I Problem 11 (c)MAA).
Let $0 \leq x \leq 90$ be chosen uniformly at random. What is the probability that the numbers $\sin ^{2} x, \cos ^{2} x$, and $\sin x \cos x$ do not form a triangle?

Note: x is measured in degrees, and you may leave your answer in terms of the $\arctan ()$ (inverse tangent) function.

Problem 9 (D.O. Shklarsky, N.N. Chentzov, I.M. Yaglom).
Prove that

$$
\begin{aligned}
\cos 5 \theta & =\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta \\
\sin 5 \theta & =\sin ^{5} \theta-10 \sin ^{3} \theta \cos ^{2} \theta+5 \sin \theta \cos ^{4} \theta
\end{aligned}
$$

Generalize those facts to

$$
\begin{gathered}
\cos n \theta=\cos ^{n} \theta-\binom{n}{2} \cos ^{n-2} \theta \sin ^{2} \theta+\binom{n}{4} \cos ^{n-4} \theta \sin ^{4} \theta-\ldots \\
\sin n \theta=\binom{n}{1} \cos ^{n-1} \theta \sin \theta-\binom{n}{3} \cos ^{n-3} \theta \sin ^{3} \theta+\binom{n}{5} \cos ^{n-5} \theta \sin ^{5} \theta-\ldots
\end{gathered}
$$

Hint: It may be helpful to recall that $e^{i \theta}=\cos (\theta)+i \sin (\theta)$.
Problem 10 (D.O. Shklarsky, N.N. Chentzov, I.M. Yaglom).
Using the previous problem, evaluate the following expressions:

$$
\begin{aligned}
& \cot ^{2} \frac{\pi}{2 n+1}+\cot ^{2} \frac{2 \pi}{2 n+1}+\cdots+\cot ^{2} \frac{n \pi}{2 n+1} \\
& \csc ^{2} \frac{\pi}{2 n+1}+\csc ^{2} \frac{2 \pi}{2 n+1}+\cdots+\csc ^{2} \frac{n \pi}{2 n+1}
\end{aligned}
$$

Hint: Using the previous problem's answer, find a polynomial with solutions $\cot ^{2} \frac{k \pi}{2 n+1}$ for $k=1, \ldots, n$. Then recall that you can easily determine the sum of the roots of a polynomial from its coefficients.

Problem 11 (D.O. Shklarsky, N.N. Chentzov, I.M. Yaglom).
Using the last problem, show that $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}$ lies between

$$
\left(1-\frac{1}{2 n+1}\right)\left(1-\frac{2}{2 n+1}\right) \frac{\pi^{2}}{6} \quad \text { and } \quad\left(1-\frac{1}{2 n+1}\right)\left(1+\frac{1}{2 n+1}\right) \frac{\pi^{2}}{6}
$$

Hint: Use (and prove) the fact that if $0<\theta<\frac{\pi}{2}$, then $\sin \theta<\theta<\tan \theta$.
Problem 12 (2006 AIME I Problem 13 © MAA).
For each even positive integer x, let $g(x)$ denote the greatest power of 2 that divides x. For example, $g(20)=4$ and $g(16)=16$. For each positive integer n, let $S_{n}=\sum_{k=1}^{2^{n-1}} g(2 k)$. Find the greatest integer n less than 1000 such that S_{n} is a perfect square.

Problem 13. Consider circumscribed circle of triangle $A B C$. For any point M on the circle, consider it's projections P and Q on the sides AC and BC respectively. Find point M so that the length of PQ is as big as possible.

Problem 14 (2016 Putnam Problem B4 © CMAA).
Let A be a $2 n \times 2 n$ matrix, with entries chosen independently at random. Every entry is chosen to be 0 or 1 , each with probability $1 / 2$. Find the expected value of $\operatorname{det}\left(A-A^{t}\right)$ (as a function of n), where A^{t} is the transpose of A.

