1. Let \(f(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 \) be a complex polynomial with real coefficients. This means that the function takes in values \(z \in \mathbb{C} \) but the coefficients \(a_i \) are real. For example, for any real polynomial we can just extend the function to complex inputs.

(a) Show that the complex conjugate of \(f(z) \), \(\overline{f(z)} \), is equal to \(f(\overline{z}) \). (Hint: Use the multiplicative property of the conjugate).

(b) Suppose \(z_0 \) is a root of \(f(z) \). This means that \(f(z_0) = 0 \). Use part (a) to show that \(\overline{z}_0 \) is also a root of \(f(z) \).

(c) What does your result in part (b) tell you about complex roots to polynomial equations?
2. Recall the polar form of a complex number: \(re^{i\theta}\), where \(r \in \mathbb{R}\), \(\theta \in [0, 2\pi)\).

(a) Use polar form to find all complex solutions to the equation \(z^3 = 1\). Write your solutions in the form \(a + bi\), where \(a, b \in \mathbb{R}\).

(b) Find all complex solutions to the equation \(z^5 = 2\). You can leave your answers in polar form.

(c) Let \(n \in \mathbb{N}\). Find all complex solutions to the equation \(z^n = 1\). You can leave your answers in polar form. Find a root \(\omega_n \in \mathbb{C}\) such that the set \(\{\omega_n, \omega_n^2, ..., \omega_n^n\}\) are all of the solutions to \(z^n = 1\).

(d) Draw the roots of \(z^4 - 1\) in the complex plane. If you connect adjacent roots with lines, what shape does this form? What shape would the roots to \(z^n = 1\) make?
Definition 1.
For any positive integer \(n \), the \(n^{th} \) roots of unity are the complex solutions to the equation \(z^n = 1 \).

3. (a) Show that if \(\omega \in \mathbb{C} \) is an \(n^{th} \) root of unity, then so is \(\bar{\omega} \).

(b) Let \(\omega_5 = e^{\frac{2\pi i}{5}} \). Show that \(\{\omega_5, \omega_5^2, \ldots, \omega_5^5\} \) are all solutions to \(z^5 = 1 \). Are there other solutions?

(c) Use part (b) to factor \(f(z) = z^5 - 1 \).

(d) By expanding out your factored form and comparing with the expanded version, show that \(\sum_{i=1}^{5} \omega_5^i = 0 \).

(e) Generalize parts (a) - (c) to show that the sum of the roots of \(z^n - 1 \) is equal to 0.
4. Again consider $\omega_5 = e^{\frac{2\pi i}{5}}$.

(a) Use the formula for $e^{i\theta}$ from last time to show that $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$.

(b) Show that $\omega_i^5 = \omega_5^{5-i}$ for $i \in \{1, 2, 3, 4, 5\}$.

(c) Let $x = \omega_5 + \bar{\omega}_5$. Compute and simplify $x^2 + x$. (Hint: Use your result from problem 3(d)).

(d) Find the exact value of $\cos\left(\frac{2\pi}{5}\right) = \cos(72^\circ)$. Hint: Use parts (a) and (b).
5. Suppose we consider the n-1 diagonals of a regular n-gon inscribed in a unit circle by connecting one vertex with all the others (an edge connecting adjacent vertices is considered a diagonal here). Show that the product of their lengths is n by following the steps below:

(a) Draw the n-gon in the complex plane, where the vertex connecting to all the others is at 1. Show that all the other vertices \(\{z_1, ..., z_{n-1}\} \) are the rest of the \(n^{th} \) roots of unity. Write an equation for the product of the lengths of the diagonals in terms of the \(z_i \).

(b) Consider the equation \(z^n - 1 = 0 \). Factor out the term corresponding to the solution \(z = 1 \) and show that all other \(n^{th} \) roots of unity \(z_i \) satisfy \(z_i^{n-1} + z_i^{n-2} + ... + z_i + 1 = 0 \). Conclude that the \(z_i \) are the roots of the equation \(z^{n-1} + z^{n-2} + ... + z + 1 \).

(c) Shifting the n-gon to the left one unit, represent the new vertices \(w_i \) in terms of the old ones \(z_i \). What equation represents the product of the lengths of the diagonals now?

(d) Change the equation in part (b) after shifting the n-gon to the left by one so that the new vertices \(w_i \) are now the solutions. Use a fact relating the product of the roots of a polynomial to the constant term of the polynomial to show that the product of the lengths of the diagonals is n.
6. Consider a regular n-gon inscribed in a unit circle. Connect every pair of vertices with a diagonal. Find the product of the lengths of all diagonals. (Again, an edge connecting adjacent vertices is considered a diagonal here.)

7. Prove that if the consecutive vertices \(z_1, z_2, z_3, z_4 \) of any quadrilateral lie on a circle, then \(|z_1 - z_3||z_2 - z_4| = |z_1 - z_2||z_3 - z_4| + |z_1 - z_4||z_2 - z_3| \). Don’t just state Ptolemy’s Theorem. Hints:

(a) Show that \((z_1 - z_3)(z_2 - z_4) = (z_1 - z_2)(z_3 - z_4) + (z_1 - z_4)(z_2 - z_3)\) for complex numbers \(z_1, z_2, z_3, z_4 \).

(b) Let \(z, w \in \mathbb{C} \). When does \(|z + w| = |z| + |w|\)?