Problem 1.
Suppose a has quotient q and remainder r when divided by b. What is the quotient and remainder of $3a$ when divided by $3b$?

Proof. Since $a = bq + r$ we have $3a = 3bq + 3r$. Since $0 \leq r < b$ we have $0 \leq 3r < 3b$. Then $3r$ is the remainder of $3a$ when divided by $3b$, and q is the quotient. \hfill \Box

Problem 2.

a) Use the Euclidean algorithm to find the gcd of the following pairs of numbers: $(52, 47)$, $(124, 1024)$, $(201, 315)$

Answers: $1, 4, 3$.

b) Find at least one pair of integer solutions for each of the following equations

\begin{align*}
52x + 47y &= 1 \\
124x + 1024y &= 4 \\
201x + 315y &= 3
\end{align*}

c) Given two positive integers a, b, describe how to find at least one solution to the equation $ax + by = \text{gcd}(a, b)$.

Proof. Let r_1, r_2, \ldots, r_n be the sequence of remainders in the euclidean algorithm applied to a and b, with $r_n = \text{gcd}(a, b)$. We will describe how to find integers x_i, y_i such that $ax_i + by_i = r_i$ for each i. Since $r_1 = a - bq_1$ we can set $x_1 = 1, y_1 = -q_1$. Similarly we can find x_2, y_2. Now suppose

\begin{align*}
ax_{k-1} + bx_k - 1 &= r_{k-1} \\
ax_k + bx_k &= r_k
\end{align*}

Let us find the next pair x_{k+1}, y_{k+1}. We have $r_{k-1} = r_k q_k + r_{k+1}$, and thus

\begin{align*}
r_{k+1} = r_{k-1} - r_k q_k = ax_{k-1} + bx_k - 1 - ax_k + bx_k = a(x_{k-1} - q_k x_k) + b(y_{k-1} - q_k y_k)
\end{align*}

Thus we can set $x_{k+1} = x_{k-1} - q_k x_k$ and $y_{k+1} = y_{k-1} - q_k y_k$. \hfill \Box

Problem 3.

In this problem, you can assume the conclusion of problem 2c): For any two positive integers a, b there exists an integer solution x, y to the equation $ax + by = \text{gcd}(a, b)$.

a) Let a be an integer and p be a prime number that does not divide a. What is $\text{gcd}(a, p)$?
Proof. Since the only positive divisors of \(p \) are 1 and \(p \), and \(p \) is not a divisor of \(a \), the gcd is 1.

b) (Euclid’s lemma) Suppose \(a, b \) are positive integers and \(p \) is prime such that \(p \mid ab \). Prove that \(p \mid a \) or \(p \mid b \). (Hint: assume that \(p \) does not divide \(a \). Then by part a) you know \(\text{gcd}(a, p) \). Use that and 2c)

Proof. Suppose \(p \) does not divide \(a \). Then \(\text{gcd}(a, p) = 1 \), and by 2c) we find integers \(x, y \) such that \(ax + py = 1 \). If we multiply this equation by \(b \) we get \(abx + pby = b \). Since \(p \mid ab \) we get that \(p \) is a divisor of \(abx + pby \), which means \(p \mid b \) and we are done.

Problem 4.
Using problem 3b), it is possible to show that any positive integer has a unique prime factorization: it can be written as a product of primes in a unique way. You can use this fact in this problem.

a) Find the smallest integer greater than 1 that has remainder 1 when divided by 2, 3, 5, 7.

Proof. If \(n \) has remainder 1 when divided by 2, 3, 5, 7, then \(n - 1 \) is divisible by 2, 3, 5, 7. Then \(n - 1 \) must have all those primes in its prime factorization, which means \(n - 1 \) is divisible by 210. Thus the smallest possible \(n \) is 211.

b) Find all such positive integers.

Proof. Since \(n - 1 \) has to be divisible by 210, and all such \(n \) work, we get \(n = 210k + 1 \) as the general expression for \(n \).