1. Simplify to a power of 3:
$$3^3 + 3^3 + 3^3 = 3 \cdot 3^3 = 3^4$$

2. Simplify to a power of 15:
$$3 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 5$$
 $(3.5)^3 = 15^3$

3. Solve to a number:
$$2^5 \cdot 5^2 (2.5)^2 \cdot 2^3 = 800$$

4. Solve to a number:
$$2^2 + 2^1 + 2^0 + 2 + 1 = 7$$

6. What ones digit do you get when you multiply out
$$123^{125}$$
? $\leftarrow \begin{vmatrix} 123 \\ 123^2 \end{vmatrix}$ $\begin{vmatrix} 123 \\ 123^3 \end{vmatrix}$ $\begin{vmatrix} 123 \\ 123^3 \end{vmatrix}$

7. Simplify to a power of 2:
$$2^5 + 4^3 + 5^2 + 6^1 + 7^0$$
 $2^5 + 2^6 + 25 + 6^4 + 2^5 +$

Is this surprising?
$$a^b+c^d$$
 $4^5+3^2=1033$

What is the last digit (the ones digit) for this sum, if you write it out and add it all up?

$$7' = 7$$
 $7^{2} = 9$
 $7^{2} = 9$
 $7^{3} = 3$
 $7^{4} = 1$
Adds to
 $7^{1} + 7^{2} + 7^{3} + \dots + 7^{2010}$
 $7^{2} + 7^{3} + \dots + 7^{2010}$
 $7^{2} = 1$
 $7^{2} = 1$
 $7^{2} + 7^{3} + \dots + 7^{2010}$
 $7^{2} + 7^{2} + 7^{3} + \dots + 7^{2010}$
 $7^{2} + 7^{2} + 7^{3} + \dots + 7^{2010}$
 $7^{2} + 7^{2} + 7^{3} + \dots + 7^{2010}$
 $7^{2} + 7^{2} + 7^{3} + \dots + 7^{2010}$

Solve this, and then tell me the sum of the digits of your answer. For instance, if your answer is 19, the sum of the digits would be 20; and if you answer is 145, the sum is 10.

2010

$$|0'-1=9|$$
 $|0^2-1=99|$
 $|0^3-1=99|$
 $|0^3-1=99|$
 $|0^3-1=99|$

What is the remainder when 3⁷⁷⁷ is divided by 7?

11. What is the remainder when
$$3^{777}$$
 is divided by 7?

 $3' \div 7 \Rightarrow 3$
 $3^{5} \div 7 \Rightarrow 5$
 $3^{6} \div 7 \Rightarrow 5$
 $3^{6} \div 7 \Rightarrow 5$
 $3^{7} \div 7 \Rightarrow 6$
 $3^{7} \div 7 \Rightarrow 6$

The integer 64 is both some number squared (8) and some number cubed (4). Find the next integer that has this same property. Next number will

26 = 23.23 and 22.72.23

be 36 /

How many 30s must be added together to get a sum equal to 30^3 ? 13.

30.30.30 = 900.30

900)

Mutiples of 4

What is the remainder when 2¹⁰⁰ is divided by 10?

33.33 on

- #6, #11, and #14 all have repeating patterns. Find the pattern and you have the answer.
 - # 9 also has a pattern: every

 Four numbers add to a ZERO
 in the 1's place.
 - # 7 manipulates +o $= 2^{5} + 2^{6} + 32$ $= 2^{5} + 2^{6} + 2^{5}$ $= 2 \cdot 2^{5} + 2^{6}$ $= 2^{6} + 2^{6}$ $= 2^{7} + 2^{6}$