Lesson 7: Remainders, Primes and the Euclidean Algorithm

Konstantin Miagkov

May 5, 2019

Problem 1.

Compute: the remainder of -7 when divided by -2 , the remainder of -153 when divided by 15 , the remainder of 153 when divided by -15 .

Problem 2.

Show that a prime number greater than 3 can be expressed as $6 n+1$ or $6 n+5$ for some nonnegative integer n.

Problem 3.

a) Find 3 distinct positive integers greater than 1 such that product of any two is divisible by the third.
b) Show how to construct infinitely many such examples.

Problem 4.

a) Let a, b be positive integers such that $a \leq 100$ and $b \leq 100$. Show that computing $\operatorname{gcd}(a, b)$ with the Euclidean algorithm takes at most 20 steps.
b) Show that in fact it takes at most 11 steps.

