Lesson 6: Greatest Common Divisor

Konstantin Miagkov

May 5, 2019

Definition 1.

The greatest common divisor (GCD) of two positive integers a, b is the biggest positive integer d such that $d \mid a$ and $d \mid b$. We denote the GCD of a and b by $\operatorname{gcd}(a, b)$.

Problem 1.

Compute the GCD of 47124 and 11050.
Hint: answer is 34, which can be determined by going through the divisors.

Problem 2.

a) Let a, b be positive integers, and $r>0$ be the remainder of a when divided by b. Then $a=b q+r$ where q is an integer. Let S be the set of all common divisors of a and b, and let T be the set of common divisors of b and r. Prove that $S=T$.
Hint: if you want to show that two sets are equal, you need to show that every element of S is also an element of T and vice-versa.

Proof. Suppose d is an element of S, that is d is a common divisor of a and b. Since $r=a-b q$, we get that d is a divisor of r and thus d is in T. Similarly if d is in T and thus is a common divisor of r and b, we have $a=b q+r$ and thus d is also a divisor of r, which means d is in S.
b) Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Hint: if two sets are the same, so are there maximal elements.

Problem 3.

Show that the fraction

$$
\frac{12 n+1}{30 n+1}
$$

is irreducible for all positive integers n.
Proof. Suppose it was reducible. Then both the numerator and the denominator share come factor $d>1$. Since $d \mid 12 n+1$ we also have $d \mid 60 n+5$. But d is also a divisor of $30 n+1$, which makes it a divisor of $60 n+2$. If d is a divisor of $60 n+2$ and $60 n+5$, it also must be a divisor of their difference, 3. But $d>1$, so it must be 3 . On the other hand, $30 n+1$ cannot be divisible by 3 as 30 is, and 1 is not. This is a contradiction, which means the fraction really must be irreducible.

Problem 4.

Can the GCD of two distinct positive integers be bigger than their difference?

Proof. No. Let d be the GCD of a and b, and suppose $a>b$. Since d is a divisor of a and b, it is also a divisor of $a-b$. Then $a-b=k d$ for some nonzero integer k. it is nonzero since $a-b$ is not zero. But then $k \geq 1$, which means $a-b=k d \geq d$.

