Lesson 6: Greatest Common Divisor

Konstantin Miagkov
May 5, 2019

Definition 1.

The greatest common divisor (GCD) of two positive integers a, b is the biggest positive integer d such that $d \mid a$ and $d \mid b$. We denote the GCD of a and b by $\operatorname{gcd}(a, b)$.

Problem 1.

Compute the GCD of 47124 and 11050.

Problem 2.

a) Let a, b be positive integers, and $r>0$ be the remainder of a when divided by b. Then $a=b q+r$ where q is an integer. Let S be the set of all common divisors of a and b, and let T be the set of common divisors of b and r. Prove that $S=T$.
Hint: if you want to show that two sets are equal, you need to show that every element of S is also an element of T and vice-versa.
b) Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Problem 3.

Show that the fraction

$$
\frac{12 n+1}{30 n+1}
$$

is irreducible for all positive integers n.

Problem 4.

Can the GCD of two distinct positive integers be bigger than their difference?

