Lesson 4: Algebra and remainders.

Konstantin Miagkov

May 4, 2019

Problem 1.

a) The straight line $y=7 x / 15+1 / 3$ passes through two intergal points: $(10,5)$ and $(-20,-9)$. Does it pass through any other integral points?

Proof. Suppose $\left(x_{0}, y_{0}\right)$ is an integer point, then

$$
7 \cdot \frac{x_{0}+15}{15}+\frac{1}{3}=7 \cdot x_{0}+\frac{1}{3}+7 \cdot \frac{15}{15}=y_{0}+7
$$

is also an integer and thus $\left(x_{0}+15, y_{0}+7\right)$ is an integer point as well. Therefore another integer point of the graph is $(25,12)$.
b) The graph of a function $y=k x+b$ passes through two distinct integral points. Are there any other integral points on this graph?

Proof. First of all, we can ensure that the slope is a rational number since if a line passes through two different integral points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ then we can calculate the slope to be

$$
k=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

Using the same idea as in part a), we add the denominator of the slope to x to get another integral point. So if we plug in $x_{1}+x_{1}-x_{0}$ for x in

$$
y=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \cdot x+b
$$

we get

$$
\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \cdot\left(x_{1}+x_{1}-x_{0}\right)+b=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \cdot x_{1}+b+y_{1}-y_{0}=y_{1}+y_{1}-y_{0}
$$

which is certainly an integer. Thus, $\left(2 x_{1}-x_{0}, 2 y_{1}-y_{0}\right)$ is another integer point.
c) Does there exist a linear function $y=k x+b$ such that its graph passes through exactly one integral point?
Proof. Yes. To achieve this, we need to pick a line with an irrational slope. $y=\sqrt{2} x$ works - then if x is a nonzero integer y cannot be an integer since $\sqrt{2}=y / x$ would be rational. Then the only integral point on this line is $(0,0)$.

Problem 2.

Solve the equation:

$$
\left\{\begin{array}{l}
\frac{x}{x+1}+y^{2}=4 \\
y^{2}-\frac{5 x}{x+1}=-14
\end{array}\right.
$$

Hint: Subtracting the lines and cancelling out y^{2} yields a linear equation in x. Once x is known, y is easily recovered. The solutions are $(-3 / 2, \pm 1)$.

Problem 3.

a) Let a, b be positive integers. Show that their exist unique nonnegative integers q, r such that $a=b q+r$ and $r<b$.
b) Let a, b be integers. Show that there exist unique integers q, r such that $a=b q+r$ and $0 \leq r<|b|$.

First proof. (Existence)
Solution 1: Consider the numbers: $0, b, 2 b, 3 b \ldots$ After some point, all numbers on the list will be greater than a. For example, $a b$ will be greater than a, and so will all the numbers that follow $a b$. Let q be the smallest number such that $q b \leq a$. Now we only have to show $a-q b<b$. Suppose that is not true, $a-q b \geq b$. Then $a \geq q b+b=(q+1) b$. This is a contradiction to q being the biggest number such that $q b \leq a$. We can conclude that there exists q and $r=a-q b$ such that $a=q b+r$ with $r<b$.

Solution 2: Let q be the integer part of a / b in decimal. For example if $a / b=7.6666 \ldots$, then $q=7$. (This can be denoted as $q=\lfloor a / b\rfloor$). Then

$$
\frac{a}{b}-q<1
$$

multiplying by $b>0$ on both sides we get $a-q b<b$, which lets us set $r=a-q b$ and be done.
(Uniqueness) Suppose there is another pair q^{\prime}, r^{\prime} satisfying the condition. So $a=q b+r$ and $a=q^{\prime} b+r^{\prime}$. Subtract one from the other, and we get

$$
\begin{gather*}
0=b\left(q-q^{\prime}\right)+r-r^{\prime} \tag{1}\\
b\left(q-q^{\prime}\right)=r^{\prime}-r \tag{2}
\end{gather*}
$$

If $q=q^{\prime}$ we must also have $r=r^{\prime}$ by equation (1), which means the pairs wee actually the same. If q and q^{\prime} are distinct integers, $\left|b\left(q-q^{\prime}\right)\right| \geq b$. But since $0 \leq r<b$ and $0 \leq r^{\prime}<b$ we have $\left|r-r^{\prime}\right| \leq b-1$. Therefore equation (2) cannot hold. Contradiction, so q and r must be unique.
b) To deal with the situation when a and b could be negative, we consider three separate cases:

1) Both a and b are negative. Then we can apply part a) to get

$$
(-a)=(-b) q+r
$$

for some $0 \leq r<|b|$. Multiplying both sides by -1 we get

$$
a=b q-r
$$

If $r=0$, then this is already in the required form. Otherwise, we can also write

$$
a=b(q-1)-r-b=b(q-1)+(-b-r)
$$

Since b is negative and $1 \leq r<|b|$ we have $0<-b-r<|b|$ and so

$$
a=b(q-1)+(-b-r)
$$

is the required form.
2) $a>0$ and $b<0$. Then we can apply part a) to get

$$
a=(-b) q+r
$$

for some $0 \leq r<|b|$. This can be rewritten as

$$
a=b(-q)+r
$$

which concludes this case.
3) $a<0$ and $b>0$. Then we can apply part a) to get

$$
-a=b q+r
$$

for some $0 \leq r<|b|$. This can be rewritten as

$$
a=b(-q)-r
$$

If $r=0$, then this is already in the required form. Otherwise, we can also write

$$
a=b(-q-1)-r+b=b(-q-1)+(b-r)
$$

Since b is positive and $1 \leq r<|b|$ we have $0<b-r<|b|$ and so

$$
a=b(-q-1)+(b-r)
$$

is the required form.
Second proof. We will give the solution straight for part b) of the problem. First suppose $b>0$. Then let us mark the points $0, b, 2 b, 3 b, \ldots$ on the coordinate line. And the same for

negative multiples of $b:-b,-2 b,-3 b$ and so on.

If we now represent a as a point on the coordinate line, it will fall between some pair of marked points, lets call them $q b$ and $(q+1) b$.

If a falls
directly on a marked point, we will call that point $q b$:

Now let
us set $r=a-q b$. Since a is between $q b$ and $q b+b$ we know that $r=a-q b<q b+b-q b=b$, so $r<b$ and clearly $r \geq 0$. Thus these r and q work, which concludes the case $b>0$.

If $b<0$, we can use the previous case: if we find q and $0 \leq r<|b|$ such that $a=q(-b)+r$, then it also holds that $a=(-q) b+r$ which is the desired formula.

The argument we presented proves that q, b exist. As far as the uniqueness goes, one can either follow the argument in part a) of the original algebraic solution, or consider the following geometric viewpoint: if one chooses $q^{\prime} b$ to be any point with $q^{\prime}>q$ where q is the one we chose, then $q^{\prime} b$ will be to the right of a and $r^{\prime}=a-q^{\prime} b$ will have to be negative. If we choose $q^{\prime}<q$, then the point $q^{\prime} b$ will be at least length b far from a to the left, and so $r^{\prime}=a-q^{\prime} b>b$ which is also prohibited. So the choices of q and r we made were in fact forced, and thus unique. As for the case $b<0$, uniqueness follows from the uniqueness of the remainder when divided by $-b$: if q, r are unique solutions for the equation $a=q(-b)+r$ with $0 \leq r<b$, then the ones for $a=q b+r$ are unique as well since they differ only by changing the sign of q.

Problem 4.

Show that $n^{5}+4 n$ is divisible by 5 for any integer n.
Proof. Recall that we can write any integer n as $5 \cdot q+r$ for some other integers q, r such that $0 \leq r<5$. Thus, we can just carry out each of the five cases for each possible remainder to show that the statement is true for every integer:

- $r=0,(5 q+0)^{5}+4 \cdot(5 q+0)=5(\ldots)+0^{5}+4 \cdot 0=5(\ldots)+0$.
- $r=1,(5 q+1)^{5}+4 \cdot(5 q+1)=5(\ldots)+1^{5}+4 \cdot 1=5(\ldots)+5=5(\ldots)+0$
- $r=2,(5 q+2)^{5}+4 \cdot(5 q+2)=5(\ldots)+2^{5}+4 \cdot 2=5(\ldots)+40=5(\ldots)+0$
- $r=3,(5 q+3)^{5}+4 \cdot(5 q+3)=5(\ldots)+3^{5}+4 \cdot 3=5(\ldots)+(5+4) \cdot(5+4) \cdot 3+12=$ $5(\ldots)+16 \cdot 3+12=5(\ldots)+60=5(\ldots)+0$
- $r=4,(5 q+4)^{5}+4 \cdot(5 q+4)=5(\ldots)+4^{5}+4 \cdot 4=5(\ldots)+(5 \cdot 3+1) \cdot(5 \cdot 3+1) \cdot 4+16=$ $5(\ldots)+1 \cdot 4+16=5(\ldots)+20=5(\ldots)+0$

Thus, since the remainders of all the above numbers when divided by 5 is 0 , it is true that $n^{5}+4 n$ is divisible by 5 for all integers n.

Problem 5.

Let x, y, z be integers such that $x^{2}+y^{2}=z^{2}$. Show that at least one of x, y, z is divisible by 3 .

Proof. Suppose none of them are divisible by 3. Suppose x has remainder 1 when it is being divided by 3 , then $x=3 n+1$ and $x^{2}=9 n^{2}+6 n+1=3\left(3 n^{2}+2 n\right)+1$. So x^{2} has remainder 1 when being divided by 3 . Suppose x has remainder 2 when it is being divided by 3 , then $x=3 n+2$ and $x^{2}=9 n^{2}+12 n+4=3\left(9 n^{2}+12 n+1\right)+1$. So x^{2} has remainder 1 when being divided by 3 . Similar argument goes for y and z. We can conclude that all of x^{2}, y^{2} and z^{2} have remainder 1 when being divided by 3 . Suppose $x^{2}=3 k+1$ and $y^{2}=3 m+1$, then $x^{2}+y^{2}=3(k+m)+2$, having remainder 2 when divided by 3. This is a contradiction to $z^{2}=x^{2}+y^{2}$ having remainder 1 when divided by 3 . So there must be at least one number divisible by 3 among x, y and z.

Problem 6.

Is it possible to write 1986 as a sum of 6 squares of odd numbers?
Hint: the remainder when divided by 8 yield a contradiction.

