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Problem 1.
a) The straight line y = 7x/15 + 1/3 passes through two intergal points: (10, 5) and
(−20,−9). Does it pass through any other integral points?

Proof. Suppose (x0, y0) is an integer point, then

7 · x0 + 15

15
+

1

3
= 7 · x0 +

1

3
+ 7 · 15

15
= y0 + 7

is also an integer and thus (x0 + 15, y0 + 7) is an integer point as well. Therefore another
integer point of the graph is (25, 12).

b) The graph of a function y = kx + b passes through two distinct integral points. Are
there any other integral points on this graph?

Proof. First of all, we can ensure that the slope is a rational number since if a line passes
through two different integral points (x0, y0) and (x1, y1) then we can calculate the slope
to be

k =
y1 − y0
x1 − x0

Using the same idea as in part a), we add the denominator of the slope to x to get another
integral point. So if we plug in x1 + x1 − x0 for x in

y =
y1 − y0
x1 − x0

· x + b

we get

y1 − y0
x1 − x0

· (x1 + x1 − x0) + b =
y1 − y0
x1 − x0

· x1 + b + y1 − y0 = y1 + y1 − y0

which is certainly an integer. Thus, (2x1 − x0, 2y1 − y0) is another integer point.

c) Does there exist a linear function y = kx + b such that its graph passes through
exactly one integral point?

Proof. Yes. To achieve this, we need to pick a line with an irrational slope. y =
√

2x
works – then if x is a nonzero integer y cannot be an integer since

√
2 = y/x would be

rational. Then the only integral point on this line is (0, 0).
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Problem 2.
Solve the equation: {

x
x+1

+ y2 = 4

y2 − 5x
x+1

= −14

Hint: Subtracting the lines and cancelling out y2 yields a linear equation in x. Once x is
known, y is easily recovered. The solutions are (−3/2,±1).

Problem 3.
a) Let a, b be positive integers. Show that their exist unique nonnegative integers q, r
such that a = bq + r and r < b.

b) Let a, b be integers. Show that there exist unique integers q, r such that a = bq + r
and 0 ≤ r < |b|.

First proof. (Existence)
Solution 1: Consider the numbers: 0, b, 2b, 3b... After some point, all numbers on the
list will be greater than a. For example, ab will be greater than a, and so will all the
numbers that follow ab. Let q be the smallest number such that qb ≤ a. Now we only
have to show a− qb < b. Suppose that is not true, a− qb ≥ b. Then a ≥ qb+ b = (q+1)b.
This is a contradiction to q being the biggest number such that qb ≤ a. We can conclude
that there exists q and r = a− qb such that a = qb + r with r < b.

Solution 2: Let q be the integer part of a/b in decimal. For example if a/b = 7.6666...,
then q = 7. (This can be denoted as q = ba/bc). Then

a

b
− q < 1

multiplying by b > 0 on both sides we get a− qb < b, which lets us set r = a− qb and be
done.

(Uniqueness) Suppose there is another pair q′, r′ satisfying the condition. So a = qb + r
and a = q′b + r′. Subtract one from the other, and we get

0 = b(q − q′) + r − r′ (1)

b(q − q′) = r′ − r (2)

If q = q′ we must also have r = r′ by equation (1), which means the pairs wee actually
the same. If q and q′ are distinct integers, |b(q − q′)| ≥ b. But since 0 ≤ r < b and
0 ≤ r′ < b we have |r − r′| ≤ b− 1. Therefore equation (2) cannot hold. Contradiction,
so q and r must be unique.

b) To deal with the situation when a and b could be negative, we consider three separate
cases:

1) Both a and b are negative. Then we can apply part a) to get

(−a) = (−b)q + r
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for some 0 ≤ r < |b|. Multiplying both sides by −1 we get

a = bq − r

If r = 0, then this is already in the required form. Otherwise, we can also write

a = b(q − 1)− r − b = b(q − 1) + (−b− r)

Since b is negative and 1 ≤ r < |b| we have 0 < −b− r < |b| and so

a = b(q − 1) + (−b− r)

is the required form.

2) a > 0 and b < 0. Then we can apply part a) to get

a = (−b)q + r

for some 0 ≤ r < |b|. This can be rewritten as

a = b(−q) + r

which concludes this case.

3) a < 0 and b > 0. Then we can apply part a) to get

−a = bq + r

for some 0 ≤ r < |b|. This can be rewritten as

a = b(−q)− r

If r = 0, then this is already in the required form. Otherwise, we can also write

a = b(−q − 1)− r + b = b(−q − 1) + (b− r)

Since b is positive and 1 ≤ r < |b| we have 0 < b− r < |b| and so

a = b(−q − 1) + (b− r)

is the required form.

Second proof. We will give the solution straight for part b) of the problem. First suppose
b > 0. Then let us mark the points 0, b, 2b, 3b, . . . on the coordinate line. And the same for

negative multiples of b: −b,−2b,−3b and so on.

0 b 2b 3b . . .−b−2b−3b
. . .

If we now represent a as a point on the coordinate line, it will fall between some pair of
marked points, lets call them qb and (q + 1)b.

. . . (q − 1)b qb a (q + 1)b (q + 2)b . . .

If a falls
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directly on a marked point, we will call that point qb:

. . . (q − 1)b qb

a

(q + 1)b (q + 2)b . . .

Now let
us set r = a−qb. Since a is between qb and qb+b we know that r = a−qb < qb+b−qb = b,
so r < b and clearly r ≥ 0. Thus these r and q work, which concludes the case b > 0.

If b < 0, we can use the previous case: if we find q and 0 ≤ r < |b| such that a = q(−b)+r,
then it also holds that a = (−q)b + r which is the desired formula.

The argument we presented proves that q, b exist. As far as the uniqueness goes, one
can either follow the argument in part a) of the original algebraic solution, or consider
the following geometric viewpoint: if one chooses q′b to be any point with q′ > q where
q is the one we chose, then q′b will be to the right of a and r′ = a − q′b will have to be
negative. If we choose q′ < q, then the point q′b will be at least length b far from a to
the left, and so r′ = a − q′b > b which is also prohibited. So the choices of q and r we
made were in fact forced, and thus unique. As for the case b < 0, uniqueness follows from
the uniqueness of the remainder when divided by −b: if q, r are unique solutions for the
equation a = q(−b) + r with 0 ≤ r < b, then the ones for a = qb + r are unique as well
since they differ only by changing the sign of q.

Problem 4.
Show that n5 + 4n is divisible by 5 for any integer n.

Proof. Recall that we can write any integer n as 5 · q + r for some other integers q, r
such that 0 ≤ r < 5. Thus, we can just carry out each of the five cases for each possible
remainder to show that the statement is true for every integer:

• r = 0, (5q + 0)5 + 4 · (5q + 0) = 5(...) + 05 + 4 · 0 = 5(...) + 0.

• r = 1, (5q + 1)5 + 4 · (5q + 1) = 5(...) + 15 + 4 · 1 = 5(...) + 5 = 5(...) + 0

• r = 2, (5q + 2)5 + 4 · (5q + 2) = 5(...) + 25 + 4 · 2 = 5(...) + 40 = 5(...) + 0

• r = 3, (5q + 3)5 + 4 · (5q + 3) = 5(...) + 35 + 4 · 3 = 5(...) + (5 + 4) · (5 + 4) · 3 + 12 =
5(...) + 16 · 3 + 12 = 5(...) + 60 = 5(...) + 0

• r = 4, (5q+4)5+4 ·(5q+4) = 5(...)+45+4 ·4 = 5(...)+(5 ·3+1) ·(5 ·3+1) ·4+16 =
5(...) + 1 · 4 + 16 = 5(...) + 20 = 5(...) + 0

Thus, since the remainders of all the above numbers when divided by 5 is 0, it is true
that n5 + 4n is divisible by 5 for all integers n.

Problem 5.
Let x, y, z be integers such that x2 + y2 = z2. Show that at least one of x, y, z is divisible
by 3.
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Proof. Suppose none of them are divisible by 3. Suppose x has remainder 1 when it is
being divided by 3, then x = 3n + 1 and x2 = 9n2 + 6n + 1 = 3(3n2 + 2n) + 1. So x2

has remainder 1 when being divided by 3. Suppose x has remainder 2 when it is being
divided by 3, then x = 3n + 2 and x2 = 9n2 + 12n + 4 = 3(9n2 + 12n + 1) + 1. So x2

has remainder 1 when being divided by 3. Similar argument goes for y and z. We can
conclude that all of x2, y2 and z2 have remainder 1 when being divided by 3. Suppose
x2 = 3k + 1 and y2 = 3m + 1, then x2 + y2 = 3(k + m) + 2, having remainder 2 when
divided by 3. This is a contradiction to z2 = x2 + y2 having remainder 1 when divided
by 3. So there must be at least one number divisible by 3 among x, y and z.

Problem 6.
Is it possible to write 1986 as a sum of 6 squares of odd numbers?
Hint: the remainder when divided by 8 yield a contradiction.
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