# Lesson 5: More remainders and divisibility. 

Konstantin Miagkov

May 5, 2019

## Problem 1.

a) Show that a number is divisible by 2 if and only if its last digit is even.
b) Show that a number is divisible by 4 if and only if its last two digits make a number divisible by 4 .
c) Can you generalize these principles to make a divisibility criterion for any $2^{n}$ ?
d) Can you do the same for $5^{n}$ ?

## Problem 2.

a) A positive integer $n$ has remainder 7 when divided by 9 . Can it have remainder 2 when divided by 3 ?
b) A positive integer $n$ has remainder 23 when divided by 144 . Can it have remainder 29 when divided by 90 ?

## Problem 3.

A positive integer $n$ has remainder 2 when divided by 3 and remainder 9 when divided by 11 . What will be its remainder when divided by 33 ? Find all possible answers and show that none other exist.

## Problem 4.

a) How many zeros does the number 10 ! end with? Reminder: $n$ ! reads $n$ factorial and equals $1 \cdot 2 \cdot \ldots \cdot n$
b) Same question for 100 !

## Problem 5.

Over the last two weeks we have seen the divisibility criterion for powers of 2 , as well as for 3,9 and 11. Find a divisibility criterion for some other odd integer $n>1$ of your choosing. The only other restriction is that your chosen $n$ should not be divisible by 5 .

