Lesson 3: More tilings and some algebra.

Konstantin Miagkov

May 4, 2019

Problem 1.

What is the biggest number of 1×4 rectangles that can be fit into a 6×6 square without overlaps?
Hint: In the diagonal coloring with four colors, one of the colors has 8 squares. Then we can fit at most 8 rectangles, An example is easy to construct.

Problem 2.

Ninety nine 2×2 squares were cut out of a 29×29 board. Prove that it is possible to cut out at least one more.
Hint: consider the following coloring: a square (i, j) is black if $i \not \equiv 2(\bmod 3)$ and $j \not \equiv 2$ $(\bmod 3)$. Visually this looks like 2×2 squares separated by single rows and columns. Then every cut out 2×2 square touches at most one black square, and there are 100 black squares.

Problem 3.

Prove that 8999999 is not a prime number.
Hint: $8999999=9000000-1=3000^{2}-1=2999 \cdot 3001$.

Problem 4.

Expand $(a+b-2 c)^{3}$.

Problem 5.

Factor the following polynomials:
a) $a c+a d+b c+b d$.
b) $a c+b c-a d-b d$.
c) $1+a+a^{2}+a^{3}$.
d) $1+a+a^{2}+a^{3}+\ldots+a^{14}$.

Hint: $\left(1+a+a^{2}+a^{3}+a^{4}\right)\left(1+a^{5}+a^{10}\right)$
e) $x^{4}-x^{3}+2 x-2$.

