Lesson 3: More tilings and some algebra.

Konstantin Miagkov

May 4, 2019

Problem 1.

What is the biggest number of 1×4 rectangles that can be fit into a 6×6 square without overlaps?

Hint: In the diagonal coloring with four colors, one of the colors has 8 squares. Then we can fit at most 8 rectangles, An example is easy to construct.

Problem 2.

Ninety nine 2×2 squares were cut out of a 29×29 board. Prove that it is possible to cut out at least one more.

Hint: consider the following coloring: a square (i, j) is black if $i \not\equiv 2 \pmod{3}$ and $j \not\equiv 2 \pmod{3}$. Visually this looks like 2×2 squares separated by single rows and columns. Then every cut out 2×2 square touches at most one black square, and there are 100 black squares.

Problem 3.

Prove that 8999999 is not a prime number. Hint: $8999999 = 9000000 - 1 = 3000^2 - 1 = 2999 \cdot 3001$.

Problem 4.

Expand $(a+b-2c)^3$.

Problem 5.

Factor the following polynomials:

- a) ac + ad + bc + bd.
 b) ac + bc ad bd.
- c) $1 + a + a^2 + a^3$.

d) $1 + a + a^2 + a^3 + \ldots + a^{14}$. *Hint:* $(1 + a + a^2 + a^3 + a^4)(1 + a^5 + a^{10})$

e)
$$x^4 - x^3 + 2x - 2$$
.