Lesson 3: More tilings and some algebra.

Konstantin Miagkov

May 4, 2019

Problem 1.

What is the biggest number of 1×4 rectangles that can be fit into a 6×6 square without overlaps?

Problem 2.

Ninety nine 2×2 squares were cut out of a 29×29 board. Prove that it is possible to cut out at least one more.

Problem 3.

Prove that 8999999 is not a prime number.

Problem 4. Expand $(a+b-2c)^3$.

Problem 5.

Factor the following polynomials:

a)
$$ac + ad + bc + bd$$
.

b)
$$ac + bc - ad - bd$$
.

c)
$$1 + a + a^2 + a^3$$
.

- d) $1 + a + a^2 + a^3 + \ldots + a^{14}$.
- e) $x^4 x^3 + 2x 2$.