
DIGITS AND BASE REPRESENTATIONS
PROBLEM SOLUTIONS

LAMC OLYMPIAD GROUP, WEEK 1

Problem 1. (a) Note that any two numbers that are congruent modulo 9 are also congruent
modulo 3. So it suffices to only give a proof for 9. Indeed, we must prove that for every number
A1A2 . . . An in base 10, we have

A1A2 · · ·An ≡ A1 + A2 + · · ·+ An(mod 9)

The idea is to observe that 10 ≡ 1(mod 9) implies 10k ≡ 1(mod 9) for all k ≥ 1. When we
write the number in expanded form, all powers of 10 can be replaced by 1:

A1A2 · · ·An = A1 × 10n−1 + A2 × 10n−2 + · · ·+ An ≡ A1 + A2 + · · ·+ An(mod 9).

An alternative solution not using modulos comes from the observation that 10k − 1 = 99 · · · 9
is divisible by nine. Thus,

A1A2 · · ·An − (A1 + A2 + · · ·+ An) = An−1 × 9 + An−2 × 99 + · · ·+ A1 × 99 · · · 9,

which is divisible by nine.

(b) We apply the same idea, only this time 10 ≡ −1(mod 11) implies 10k ≡ (−1)k(mod 11) for
all k ≥ 1. So when we expand, we get the desired result

A1A2 · · ·An = A1 × 10n−1 + A2 × 10n− 2 + · · ·+ An

≡ A1 × (−1)n−1 + A2 × (−1)n−2 + · · · − A2 + A1(mod 11).

(c) Note that 2a5b divides 2max(a,b)5max(a,b) = 10max(a,b). Hence, any two numbers congruent
modulo 10max(a,b) are also congruent modulo 2a5b. Since the residue class modulo 10max(a,b) is
given by the last max(a, b) digits, we learn that the last max(a, b) digits also determine the
residue class module 2a5b. �

Problem 2. The number of zeros in n! is the minimum between the exponent of 2 in n! (call
this a), and the exponent of 5 in n! (call this b). Indeed, if

n! = 2a · 5b ·m

where m is relatively prime (coprime) with 10, then the maximal power of 10 dividing n! is
10min(a,b). So it remains to compute a and b, and figure out which of them is smaller.

To compute a (the exponent of 2), note that each even number between 1 and n (that is,
2, 4, 6, . . . , 2bn/2c) contributes at least one factor of 2 to the product n! = 1 · 2 · · · (n − 1) ·
n. Overall, they contribute bn/2c units to the exponent a. But the multiples of 4 (that is,
4, 8, 12, . . . , 4bn/4c) each contribute an extra factor of 2, so to account for this we have to add
bn/4c to a. We continue this counting process for 8, 16, 32, etc., until we’ve eventually used
all the powers of 2 that are less than or equal to n. Overall, we have that
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where 2k is the largest power of 2 that is less than or equal to n. By the exact same argument,
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where 5q is the largest power of 5 that is less than or equal to n. Note that it is okay to include
larger powers of 5 in this count, since for j > q, we have 5j > n so bn/5jc = 0. Hence we may
as well write
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, and so on. (In fact, it is easy to see that k ≥ q,

so max(k, q) = k). Hence min(a, b) = b; in other words, in forming zeros at the end of n!,
we run out of 5’s before we run out of 2’s. The number of zeros at the end of n! is thus
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Remark. We implicitly used the fact that 2 and 5 are prime, so this type of argument wouldn’t
work to show the wrong statement that the exponent of 10 in n! is⌊ n
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This is because a 10 can appear from the product of a number divisible by 2 and one divisible
by 5 (rather than only from numbers that are directly divisible by 10); for primes we don’t have
this problem, since they are indivisible.

So, if we worked in a general base B ≥ 1 instead of base 10, think about how you could use the
prime factorization of B to answer in how many zeros (n!)B ends.

Problem 3. By Problem 1 (a), any positive integer n is congruent modulo 9 to the sum of its
digits, which we denote by S(n). But using Problem 1 (a) again, S(n) is also congruent modulo
9 to the sum of its digits, S(S(n)). Repeating this process sufficiently many times, we get

n ≡ S(n) ≡ S(S(n)) ≡ · · · ≡ Superdigit(n) (mod 9)

In other words, the residue (or congruence class) modulo 9 is an invariant under the operation
of taking the sum of digits, so no matter how many times we apply this operation, this invariant
stays the same. Remember that invariants are very important in Combinatorics, but here we
see that they also show up in Number Theory.

But 5 is the only digit congruent to 5 modulo 9, so a positive integer has superdigit 5 if and
only if it is congruent to 5 modulo 9. Up to 2019, the positive integers congruent to 5 modulo
9 are 9 · 0 + 5, 9 · 1 + 5, . . . , 9 · 223 + 5, so the answer is 223− 0 + 1 = 224. �

Remark. The term “superdigit” isn’t standard, so don’t use it outside of this problem. Also,
you may wonder if the superdigit of a number is well-defined, that is, if for every positive integer
n we eventually reach a single digit by repeatedly taking the sum of digits: S(n), S(S(n)), · · · .
This is, indeed, not hard to prove: try showing that if n has at least two digits, then S(n) < n.
Since S(n) is always positive, we cannot go down indefinitely in the tower of inequalities n >
S(n) > S(S(n)) > · · · . Hence at some point in this tower we must reach a number d such that
S(d) = d, that is d is a digit (the superdigit).
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Problem 4. Let us denote the number ABCDE by the letter x. Then the condition 3 ×
2ABCDE = ABCDE2 becomes

3 · (200000 + x) = 10 · x + 2.

Now, we can simply solve for x:

600000 + 3x = 10x + 2 ⇐⇒ 7x = 599998 ⇐⇒ x =
599998

7
= 85714.

Hence, A = 8,B = 5,C = 7,D = 1,E = 4. Note that another way to arrive at the answer is to
deduce the letters one by one, starting from E,D, ... and ending with A. However, this method
is simpler and more elegant.

Problem 5. Let us first assume that 2 and 5 do not divide n, and prove that m
n

can be
represented decimally without a non-periodic part. To this end, we recall the celebrated theorem
of Euler, which states that

aϕ(n) ≡ 1(mod n),

for all integers a coprime to n.1 We can apply this for a = 10, because we have assumed that
2 and 5 do not divide n. This means that n divides 10ϕ(n) − 1, that is that 10ϕ(n) − 1 = nd for
some positive integer d. Thus,

m

n
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nd
=

md

10ϕ(n) − 1
.

We extract the greatest multiple of 10ϕ(n)− 1 from the numerator md:

md = q(10ϕ(n) − 1) + r,

and we are left with
m

n
= q +

r

10ϕ(n) − 1
.

where q is an integer, and 0 ≤ r < 10ϕ(n)−1. The term r
10ϕ(n)−1 has no nonperiodic part, due to

the formula for 0.C1C2 · · ·Cp from class. This proves the claim.

Assuming now that m
n

has no nonperiodic part, we have

m

n
= A1 · · ·Am . C1 · · ·Cp = A1 · · ·Am +

C1 · · ·Cp

10p − 1
.

The denominator of this fraction in reduced form is a divisor of 10p − 1, which indeed is not
divisible by 2 or 5. �

Problem 6. Note that the number of digits of 2n (or any positive integer) is determined by
the smallest power of 10 bigger than it. Hence we basically want to compare (and in fact,
approximate) powers of 2 with powers of 10 in a somewhat efficient way. To do this, it is
natural to search for powers of 2 that are close to powers of 10; we find that

23 = 8 < 10, 210 = 1024 > 103.

(Remember that 210 = 1024 is very close to 1000; this shows up a lot, especially in Computer
Science). We then try to take as many 1024’s out of 2n as we can, resulting in

2n = 210(n/10) = 1024n/10

≥ 1000n/10 = 100.3·n ≥ 10b0.3·nc,

1Here, ϕ(n) is used to denote the number of integers between 1 and n that are coprime to n.
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where the last number has exactly b0.3 ·nc+ 1 ≥ 0.3 ·n digits (note that 0.3 ·n is not in general
an integer, but it still makes sense to compare it with integers).

Recall that for any real number x, the largest integer less than or equal to x is denoted
bxc, and called the floor of x. Symmetrically, the smallest integer greater than or equal
to x is denoted dxe, and called the ceiling of x. Please don’t use any other notations.

Similarly, for the upper bound, assume WLOG that n ≥ 1 (at n = 0 the claim is trivial). Then
we can write

2n = 23(n/3) = 8n/3

< 10n/3 ≤ 10d0.3·ne

Since 2n is strictly less than the above power of 10, we find that it has at most d0.3·ne ≤ 0.3·n+1
digits. �

Problem 7. Recall that a strictly positive integer n has k digits if and only if the inequality
10k−1 ≤ n < 10k holds. If we denote by a and b the number of digits in 2n and 5n respectively,
then we have the two inequalities

10a−1 ≤ 2n < 10a

10b−1 ≤ 5n < 10b.

Furthermore, notice that the equality case in the left side cannot occur, since 2n and 5n are
not powers of ten. Since everything is positive, we can multiply the two inequalities (which are
now strict), to get

10a+b−2 < 10n < 10a+b.

Since powers of ten increase strictly when the exponent increases, we can derive that a+b−2 <
n < a + b. Since a, b, n are integers, the only possibility left is n = a + b − 1, or equivalently
a + b = n + 1. This shows that the total number of digits in 2n and 5n for n > 0 is equal to
n + 1.

Problems 8 and 9. These were given as homework, but they’re not very hard. Try starting
with smaller cases (n = 0, 1, 2) and prove your statement in that case (for 8), or guess a pattern
(for 9). Recall that in class we solved Problem 9(a) by showing that

99 · · · 9︸ ︷︷ ︸
n digits

800 · · · 0︸ ︷︷ ︸
n digits

1 = ( 99 · · · 9︸ ︷︷ ︸
n+ 1 digits

)2.

Problem 10. The trick here is to notice that 102n − 1 = (10n − 1)(10n + 1). Indeed, we can
use this to deduce

1

10n + 1
=

10n − 1

102n − 1
=

00 · · · 099 · · · 9
99 · · · 999 · · · 9

,

where both the blue and the red part each have n digits. Hence,

1

10n + 1
= 0.00 · · · 099 · · · 9 = 0.00 · · · 099 · · · 900 · · · 099 · · · 900 · · · 099 · · · 9 · · ·

is the decimal expansion.

We’ll let you work on Problems 11, 12 and 13 from the handout on digits and base representa-
tions for as long as you want, and you can turn in any solution to them. In particular, if you
solve 11 or 12, you’ll get a lot of bonus points in our ranking.


