
Braids, Knots and String Things
Jeff Hicks

1 Knots

Last week, we defined a knot as a closed piece of string, and represented them
with diagrams, which were their projections onto the plane. In these dia-
grams, we drew arcs between points and noted which string passed over/under
at each crossing. Let’s warm up with some simple problems about knots.

Problem 1.1. Could you convey the information about a trefoil to someone
else sitting at your table without drawing?

Problem 1.2. Draw a knot. Can you color the regions inside the knot black
and white such that no two adjacent regions have the same coloring (i.e, a
checkerboard coloring)? Can you do this for all knots?

Problem 1.3. What is the smallest number of crossings a knot can have and
be non-trivial?

2 Colorings

We called two knots “equivalent” if we could find a smooth deformation
from one knot to another. We used 3 moves to deform the knots and called
them Reidemeister Moves (see Figure 1); they were the only moves that were
required to get from any one knot diagram to another.

We began looking at properties of knots, including three-coloring of knots.
A knot diagram was three-colorable if it satisfied the following properties:

1. Every arc was colored red, blue or yellow

2. Every crossing had all three colors appear, or only one color appear.

3. All colors were used
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Figure 1: The three Reidemeister moves.

Figure 2: The Right and Left Trefoil in all of their glory.

We also showed that the Reidemeister moves were compatabile with three
colorability. This invariant could tell us that the trefoil knot was not a trivial
knot.

Problem 2.1. Can you find a knot that is not trivial, but not three colorable?
Why does this make the three-coloring knot invariant less-than-ideal?

Problem 2.2. Suppose we loosen the definition of three coloring by dropping
condition 3. We can then look at the three-coloring number, the number of
ways to three-color a knot. What is the three-coloring-number of the trefoil?
What about the unknot?

Problem 2.3. Compute the three-coloring number of 51 (drawn on the board)

Problem 2.4. We define a link to be a several closed pieces of string and we
also represent it with a projection. Can you find a link that has the same
three-coloring-number as the trefoil? Is this link three-colorable?

Problem 2.5. Can the three coloring number or the three coloring invariant
distinguish between the right and left trefoil? (see Figure 2)
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3 Bridge Number

An arc that begins at an undercrossing, goes through several overcrossings,
and ends at an undercrossing is called a bridge. The Bridge number of a
diagram is the number of bridges that are present in it. However, the bridge
number is not necessarily the same as the number of crossings in the diagram.
For instance, the bridge number of Figure 3 is 1, but the number of crossings
is 5.

Problem 3.1. Which is bigger, the bridge number or the crossing number of
a diagram? When are they equal?
The bridge number of a diagram, like the crossing number of a diagram,
is not invariant under Reidemeister moves, so it is not such a wonderful
knot invariant. We can force this property by looking at the minimal bridge
number over all diagrams.
We define the Bridge Number of a knot to be the minimal bridge number of
all possible diagrams.

Problem 3.2. What is the smallest possible bridge number. Can a knot with
this bridge number be non-trivial?

Problem 3.3. What is the smallest possible bridge number for a non-trivial
knot? How many knots have this bridge number?

Problem 3.4. Compute the bridge number for the trefoil knot.

Figure 3: A poorly drawn trivial knot.
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(a) Braided Hair. (b) A slightly
less appealing
representation of
the same braid.

(c) An ugly braid.

Figure 4: Some Braids of various elegance.

4 Braids

We define a braid to be a collection of strings that run from one plane to
another, such that no string doubles back on itself. Braids are a lot like
knots, in that we represent them with diagrams as well. However, they have
a far more accessible structure, as they run only “up and down”. Both braids
and knots have crossings with many of the same properties. We will, in fact,
define relationship between braids using the Reidemeister moves as well.

Problem 4.1. Which of the Reidemeister moves can be applied to braids?
Why not the other(s)?

Problem 4.2. Describe a braid diagram (figure 4(b)) to someone else at your
table without drawing any pictures. Is this more difficult or easier than
describing the structure of a knot?

Problem 4.3. Can you come up with a formal way to describe braids?
We will describe braids as elements of a group; a set where there is a

“multiplication” that satisfies the usual properties. The set that we will be
looking at is Bn, the collection of all braids with n strings.

Problem 4.4. How many elements are in Bn?
In this group we will be able to combine braids by “stacking” (figure 5). If
we have two braids, β1 and β2, we will write the braid resulting from their
stacking as β3 = β1β2.
For the following problems, consider the braids in B4.
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Figure 5: A crudely drawn diagram of Braid Composition

Problem 4.5. Can you think of a braid βI such that when it is combine with
any other braid β, we have that βIβ = ββI = β?

Problem 4.6. Given β1 can you think of a braid β−11 such that β−11 β1 =
β1β

−1
1 = βI? Draw a few examples to see how it works.

Problem 4.7. Can you think of two braids β1 and β2 such that β1β2 = β2β1?
We can begin to look at all of the generators of braids. We will call them

σ1, σ2 . . . σn−1, and they will be the crossing of the i and i+1 strings. We can
make any braid diagram by stringing these simplest braids together (Figure
6).

Problem 4.8. Can you represent Reidemeister’s 2nd move in terms of braids?

Problem 4.9. Can you represent Reidemeister’s 3rd move in terms of braids?

Problem 4.10. Do these represent all of the possible relationships between
braids?

Figure 6: Braid on left represented as σ1σ
−1
2 σ1σ

−1
2 .
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5 Braid Closures

We can start to make knots out of braids. We simply glue the bottom of the
braid to the top; we call this operation the closure of the braid, and represent
it as β̄. The simplest way to understand this is to see a picture; the closure
σ̄3
1 from the braid group B2 is shown in Figure 7. This gives us two new

important invariants; the Braid index and Braid Word. We define the Braid
index of a knot K to be the smallest n such that the closure of a braid from
Bn is K. We then define the Braid Word to be a braid of shortest length
(meaning having the least number of symbols) whose closure is K.

Problem 5.1. Is the Braid Index a good invariant? In particular, are their
multiple different knots with the same braid index? Can a knot have multiple
different values for the Braid Index?

Problem 5.2. How is the length of the Braid Word related to it’s knot?

Problem 5.3. Use the braid word to prove that the right trefoil is not the
same as the left trefoil.

Problem 5.4. What knots have braid index 2?

Problem 5.5. Where have we seen the braid index before?

6 Things to Think About

Problem 6.1. We can use our Braid Relationships to resolve Reidemeister’s
2nd and 3rd moves in our braid word; is there a way to represent the 1st
one?

Problem 6.2. Under what conditions is the closure of a braid a knot? A link
on 2 strings? A link on n-strings?

Problem 6.3. It is easy to see that the closure of every braid is either a knot
or a link. Is their a braid to represent every single knot or link?

Figure 7: The closure of σ3
1.
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7 Finding the Braid Word

We can find the braid word of a knot diagram by the following method:
Assign an orientation to the knot diagram. This means put a direction on
a segment, and follow this direction around the diagram. We call the knot
diagram orientable if there exists a point inside of the digram for which all of
the arcs maintain the same orientation. For example, the trefoil is orientable
as shown in Figure 8.
Once we have an oriented diagram, we draw a ray from the point of orien-
tation and “cut” knot along this ray. This gives us a braid on n strings,
where n is the number of strings we cut. We then read the braid word of the
diagram off of this braid.

Figure 8: An oriented Trefoil. Isn’t it Pretty?

Problem 7.1. Orient the knots 51 and 818 (drawn on the board).

Problem 7.2. Calculate the braid word of the knots 51 and 818 (drawn on the
board).

Problem 7.3. Try calculating the braid word of 41 (drawn on the board).
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Figure 9: The Orientation Changing Process.

What is the problem with this knot diagram? Can you change it using Rei-
dimeister moves so you can find the braid word?

We will now explore a method for taking a non-oriented knot diagram
and turning it into an oriented one.

1. Take the knot diagram and break it into line segments.

2. Assign an orientation to the line segments.

3. Pick an arbitrary point inside the knot diagram.

4. Draw a ray from this point, and assign an orientation to the ray.

5. Rotate the ray around the point: if you encounter a line segment with
the wrong orientation, replace it with two line segments of proper ori-
entation. Do this by the process shown in Figure 9.

When we finish this process, we have replaced every improperly oriented
line segment with a properly oriented one. In Figure 7 we see the 41 knot
oriented by this method.

Problem 7.4. Calculate the braid word for 62 (drawn on the board)
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Figure 10: The transformation of 41 from un-oriented to oriented knot

8 Flat Braid Diagrams

In the same way that we represent knots by looking at their planar projec-
tions, we look at braids by looking at their planar projections. A braid dia-
gram is the planar projection of arcs connecting a set of points {A,B,C . . . N}
to {A′, B′, C ′, . . . N ′} with each point associated with one arc. We also use
Reidmeister moves to alter the diagrams of braids, but we don’t allow arcs to
travel through the points {A,B,C . . . N} or {A′, B′, C ′, . . . N ′} as we deform
them.
Suppose we allow arcs to travel over the points {A,B,C . . . N} or under the
points {A′, B′, C ′, . . . N ′}. With these additional moves, we can take any
braid diagram to a diagram that has no crossings. Such a diagram is called
the flat braid diagram of a knot.

Problem 8.1. Draw both the standard and flat diagram of β = σ1σ2σ
−1
1 where

the β ∈ B3.

Problem 8.2. Look at the braid in Figure 12. Name this braid, and draw it
on you paper. Then draw the flat diagram of this braid.

Problem 8.3. We take the closure of a braid diagram by connecting {A,B,C . . . N}
to {A′, B′, C ′, . . . N ′} with arcs. What is interesting about the arcs drawn
when we do this for a flat braid diagram? Do the flat braid diagram opera-
tions change the resulting knot?
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Figure 11: The Braid σ1σ
−1
2 in both standard and flat form

Figure 12: A three dimensional braid.
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