
Integer-Valued Polynomials

LA Math Circle
High School II

Dillon Zhi

October 11, 2015

1 Introduction

Some polynomials take integer values p(x) for all integers x. The obvious examples
are the ones where all the coefficients are integers. But the coefficient don’t all have
to be integers.

Examples:

In this session, you will find out which polynomials are integer-valued polynomi-
als.

The main tool we will use is finite differences. For any expression f(x) with x
as a variable, we will define the first difference ∆xf(x) by

∆xf(x) = f(x + 1)− f(x).

Usually, we’ll just write “∆” instead of “∆x”. To put it another way, if f is a function,
we can write ∆f to mean the function that takes x and returns f(x + 1)− f(x).

Example:

x x2 ∆(x2) ∆(∆(x2)) ∆(∆(∆(x2))

0 0 1
1 1 3
2 4
3
4
5
6
7

Instead of ∆(∆f), we can also just write ∆2f , the second difference of f . More
generally, ∆r means, “take the first difference r times” (that is, the r-th difference).
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2 Finite difference basics

1. Compute and simplify the following first differences:

a. ∆(x2)

b. ∆(x3)

c. ∆(7x)

d. ∆(x!)

2. a. The quantity ∆(f(x) + g(x)) is equal to ∆f(x) + ∆g(x), since both are

equal to after expanding.

b. The quantity ∆(cf(x)) is equal to c∆f(x), where c is a constant: both

are equal to .

3. a. Let f be a function which takes integer inputs and returns real outputs.
(We usually write this as “f : Z→ R”.) If f is a constant function, then

we have ∆f = everywhere.

Show that the converse of this also holds.

b. Now suppose that f : R→ R. Give an example of a function f such that
∆f = 0 but f is not a constant function.
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c. Continuing from the previous question, show that f must be a constant
function if we also assume that f is a polynomial function.

d. Prove that if f(x) and g(x) are polynomials such that ∆f(x) = ∆g(x),
then there is a constant C such that f(x) = g(x) + C.

Also, if f and g are integer-valued functions, then C is an integer.

4. Recall that the degree of a polynomial in x is the highest power of x which
has a non-zero coefficient. Constant polynomials have degree 0, except the
zero polynomial, which is a special case: we will leave the degree of the zero
polynomial undefined (it’s often said to be −∞).

Prove that if p(x) is a polynomial of degree n ≥ 1, then ∆p(x) is a polynomial
of degree n− 1.

5. If you take the n-th difference of a degree n polynomial p(x), then you’ll end

up with .
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3 The special polynomials Pn(x)

We will now focus on the polynomials

Pn(x) =
1

n!
x(x− 1)(x− 2)(x− 3) · · · (x− n + 1).

For instance, P3(x) = x(x−1)(x−2)/6, P2(x) = x(x−1)/2, P1(x) = x, and P0(x) = 1
(think about that last one for a little bit).

1. What is ∆Pn(x), for each nonnegative integer n?

2. Prove that Pn(x) is an integer whenever x is an integer.
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3. Remember the principle of mathematical induction: Suppose a statement is
true for n = 0. Also suppose that if the statement were true for a particular n,
then it must also be true for n + 1. Then we can conclude that the statement
is true for all integers n ≥ 0.

Prove (by induction) that every integer-valued polynomial p(x) is an “integer
linear combination” of P0(x), P1(x), .... That is,

p(x) = cnPn(x) + cn−1Pn−1(x) + · · ·+ c1P1(x) + c0P0(x)

for some integers cn, cn−1, ..., c1, c0.

Hint:

a. Prove that the statement is true if p(x) is a constant polynomial.

b. Assume that the statement is true for all polynomials of degree n, for some
particular n. Prove that the statement is true for all polynomials of degree
n + 1.
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4. Prove that every real polynomial p(x) is a real linear combination of P0(x), P1(x), ....
That is,

p(x) = cnPn(x) + cn−1Pn−1(x) + · · ·+ c1P1(x) + c0P0(x)

for some real numbers cn, cn−1, ..., c1, c0.

5. We now know that every integer-valued polynomial p(x) looks like

p(x) = cnPn(x) + cn−1Pn−1(x) + · · ·+ c1P1(x) + c0P0(x)

for some integers cn, cn−1, ..., c1, c0. But is it possible for p(x) to be expressed
in this form in more than one way? We will soon see.

a. Let cn, cn−1, ..., c1, c0 be real numbers. Prove that if

cnPn(x) + cn−1Pn−1(x) + · · ·+ c1P1(x) + c0P0(x) = 0

for all x, then cn, cn−1, ..., c1, c0 must all be 0.

b. Prove that every polynomial can be expressed in the form

cnPn(x) + cn−1Pn−1(x) + · · ·+ c1P1(x) + c0P0(x)

in only one way.
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4 Computing the coefficients

You’ve proven that every integer-valued polynomial can be expressed as a unique
integer-linear combination of P0(x), P1(x), ..., but how do you compute the actual
values c0, c1, ...?

1. Let’s say you are told that p(x) is a polynomial of degree n, and you are given
the values of p(0), p(1), ..., p(n), which are integers. Come up with an algorithm
to find the integers c0, c1, ..., cn−1, cn.

2. Demonstrate your algorithm on this example, where p(x) is a polynomial of
degree 3:

x p(x) ∆(p(x)) ∆2(p(x)) ∆3(p(x))

0 2
1 -3
2 0
3 5
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5 Bonus problems

1. Find all integer-valued polynomials in two variables. That is, the value of the
polynomial p(x, y) is an integer whenever x and y are both integers.

2. Find all integer-valued rational functions with rational coefficients. (A “ratio-
nal function with rational coefficients” is a function f which can be expressed
in the form f(x) = A(x)/B(x), where both A(x) and B(x) are polynomials
with rational coefficients.)
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