Continued Fractions I

Matthew Gherman and Adam Lott

January 13, 2019

Definition 1. A finite continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots+\frac{1}{a_{k-1}+\frac{1}{a_{k}}}}}}
$$

where $a_{0}, a_{1}, \ldots, a_{k}$ are natural numbers. It is also denoted $\left[a_{0}, a_{1}, \ldots, a_{k}\right]$.
Exercise 1. Write each of the following as a continued fraction:
(a) $5 / 12$
(b) $5 / 3$
(c) $33 / 23$
(d) $37 / 31$

Exercise 2. Write each of the following continued fractions as a regular fraction in lowest terms:
(a) $[2,3,2]$
(b) $[1,4,6,4]$
(c) $[2,3,2,3]$
(d) $[9,12,21,2]$

Exercise 3. Let p / q be a positive rational number in lowest terms. Perform the Euclidean algorithm to obtain the following sequence:

$$
\begin{aligned}
p & =q_{0} q+r_{1} \\
q & =q_{1} r_{1}+r_{2} \\
r_{1} & =q_{2} r_{2}+r_{3} \\
& \vdots \\
r_{k-1} & =q_{k} r_{k}+1 \\
r_{k} & =q_{k+1}
\end{aligned}
$$

(We know that we will eventually get 1 as the remainder because p and q are relatively prime). Prove that $p / q=\left[q_{0}, q_{1}, \ldots, q_{k+1}\right]$.

Exercise 4. Repeat Exercise 1 using the method outlined in Exercise 3.
Definition 2. Continued fractions don't always have to be finite. An infinite continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\ldots}}}}
$$

where $a_{0}, a_{1}, a_{2}, \ldots$ are natural numbers. To prove that this expression actually makes sense and equals a finite number is beyond the scope of this worksheet, so we assume it for now. This is denoted $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$.

Exercise 5. Using a calculator, compute the first five terms of the continued fraction expansion of the following numbers:
(a) $\sqrt{2}$
(b) $\pi(\approx 3.14159 \ldots)$
(c) $\sqrt{5}$
(d) $e(\approx 2.71828 \ldots)$

Do you notice any patterns?

Exercise 6. Let α be a positive real number. Prove that α can be written as a finite continued fraction if and only if α is rational. (Hint: for one of the directions, use Exercise 3).

Definition 3. The continued fraction $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ is periodic if it is of the form

$$
\left[a_{0}, \ldots, a_{r}, a_{r+1}, \ldots, a_{r+p}, a_{r+1}, \ldots, a_{r+p}, a_{r+1}, \ldots, a_{r+p}, \ldots\right]
$$

In this case it is denoted $\left[a_{0}, \ldots, a_{r}, \overline{a_{r+1}, \ldots, a_{r+p}}\right]$.
Example 1.
(a) $[1,2,2,2, \ldots]=[1, \overline{2}]$ is periodic.
(b) $[1,2,3,4,5, \ldots]$ is not periodic.
(c) $[1,3,7,6,4,3,4,3,4,3, \ldots]=[1,3,7,6, \overline{4,3}]$ is periodic.
(d) $[1,2,4,8,16, \ldots]$ is not periodic.

Exercise 7.

(a) Prove that $\sqrt{2}=[1, \overline{2}]$.
(b) Prove that $\sqrt{5}=[2, \overline{4}]$.
(Hint: use the same strategy as Exercise 5 but without a calculator.)
Exercise 8 (CHALLENGE). Express the following continued fractions in the form $\frac{a+\sqrt{b}}{c}$ where a, b, and c are integers:
(a) $[1]$
(b) $[2,5]$
(c) $[1,3, \overline{2,3}]$

Exercise 9 (EXTRA CHALLENGE). Let $\alpha=\left[a_{0}, \ldots, a_{r}, \overline{a_{r+1}, \ldots, a_{r+p}}\right]$ be any periodic continued fraction. Prove that α is of the form $\frac{a+\sqrt{b}}{c}$ for some integers a, b, c where b is not a perfect square.

Exercise 10 (SUPER DUPER CHALLENGE). Prove that any number of the form $\frac{a+\sqrt{b}}{c}$ where a, b, c are integers and b is not a perfect square can be written as a periodic continued fraction.

Remark 1. Numbers of the form $\frac{a+\sqrt{b}}{c}$ where a, b, c are integers and b is not a perfect square are the "simplest" irrational numbers in the following sense. A number is rational if and only if it is the solution to a degree 1 polynomial equation, $a x+b=0$. Similarly, a number is of the form $\frac{a+\sqrt{b}}{c}$ if it is the solution to a degree 2 polynomial equation, $a x^{2}+b x+c=0$ (Bonus exercise: prove this). Such numbers are called quadratic irrational numbers or degree 2 irrational numbers.

Remark 2. Notice that the results of this worksheet provide a very clean characterization of continued fraction expansions:

- α is a rational number if and only if it has a finite continued fraction expansion.
- α is a degree 2 irrational number if and only if it has an infinite periodic continued fraction expansion.

