Lesson 7: Invariants and the Intercept Theorem

Konstantin Miagkov

March 3, 2019

1 From Last Time

Problem 1.

a) Consider an $n \times m$ table filled with integers. With one operation, you are allowed to take any row or column and and negate every number in that row/column. Show that it is possible to make sure every row and column has nonnegative sum using such operations.

b) Same problem with real numbers in the table, not integers.

Problem 2.

Consider n segments on the plane with 2n distinct endpoints. The following process is performed: if two segments AB and CD intersect, we replace them by segments AD and BC. Show that eventually no two segments will intersect.

2 New Problems

Problem 1 (Intercept Theorem).

a) Consider two rays r, ℓ out of point O and distinct points A_1, \ldots, A_n on r such that

$$A_1A_2 = A_2A_3 = \ldots = A_{n-1}A_n$$

Show that if B_1, \ldots, B_n are points on ℓ such that the lines $A_i B_i$ are parallel to each other for all $1 \leq i \leq n$, then

$$B_1B_2 = B_2B_3 = \ldots = B_{n-1}B_n$$

Hint: We proved the case n = 2 last week in problem L6.5. For the general case, use the statement for n = 2 to show that $B_1B_2 = B_2B_3$, then use it to show that $B_2B_3 = B_3B_4$, and so on to conclude the problem.

b) With O, r, ℓ as in part a), let A, B, C be points on r such that AB/BC is an integer. Show that if A', B', C' are points on ℓ such that $AA' \parallel BB' \parallel CC'$, then A'B'/B'C' = AB/BC.

Hint: let AB/BC = n. Set up points A_1, \ldots, A_{n-1} on AB such that

$$AA_1 = A_1A_2 = \ldots = A_{n-1}B = BC$$

then use part a).

c) Same as part b), except AB/BC is rational. Hint: if AB/BC = m/n, add some extra points on both the segment AB and the segment BC similarly to part b), then use 1a).

Problem 2.

Let AB be a given segment, and n be a positive integer. Use straightedge and compass to split AB into n equal parts. You may assume the result of problem 1a). *Hint: Construct a random auxiliary line* ℓ *through* A *and points* A_0, \ldots, A_n *on* ℓ *such that* $A_0 = A$ *and*

$$A_0A_1 = A_1A_2 = \ldots = A_{n-1}A_n$$

Now use 1a).

Problem 3.

Let ABCD be an arbitrary quadrilateral. If M, N, P, Q are the midpoints of AB, BC, CD, DA respectively, show that MNPQ is a parallelogram.