Hyperbolic Geometry Solutions

LAMC

Problem 1.3. b) By Power of a Point (Problem 1.1) we have $|O N| \cdot|O M|=|O A|^{2}=r^{2}$, so each orthogonal circle is fixed under inversion.

c) Lines through O, the center of ω, are mapped to themselves. Now consider the case when the line ℓ is outside the circle of inversion. Drop the foot from O to A. Invert A

about the circle to obtain A^{\prime}. Then construct the circle Γ going through O and A^{\prime} with radius $\left|O A^{\prime}\right| / 2$. Let P be a point on ℓ and let P^{\prime} be the intersection of the line through $O P$ with Γ. We must show $\left|O P^{\prime}\right||O P|=r^{2}$. We have $O P^{\prime} A^{\prime} \sim O A P$ so

$$
\frac{\left|O P^{\prime}\right|}{|O A|}=\frac{|O A|}{|O P|} \Longrightarrow\left|O P^{\prime}\right||O P|=|O A|^{2}
$$

The same argument shows a circle through the center of ω is mapped to a line outside ω.
Now suppose the line intersects ω. The same argument works.

Now consider the case of a circle Γ outside of the circle of inversion ω.

Draw the line through the centers O and O_{2}. Let A and B be the intersections of this line with Γ. We construct a circle Γ^{\prime} as follows: Invert A and B about ω to A^{\prime} and B^{\prime} respectively and construct the circle through B^{\prime} and A^{\prime} with radius $\left|B^{\prime} A^{\prime}\right| / 2$. Now let P be a point on Γ. It suffices to show the inversion P^{\prime} of P is on Γ^{\prime}. To that end construct the line through O and P. Let Q be its intersection with Γ and Q^{\prime} its intersection with Γ^{\prime}. Now $O A^{\prime} P^{\prime} \sim O B Q$. Note that $\angle A P Q=\angle O B Q$ since they subtend the same arc. Thus $O A^{\prime} P \sim O P A$, so we get

$$
\frac{\left|O A^{\prime}\right|}{\left|O P^{\prime}\right|}=\frac{|O P|}{|O A|} \Longrightarrow\left|O P \| O P^{\prime}\right|=|O A|\left|O A^{\prime}\right|=r^{2}
$$

Problem 1.5. By 1.4 we can construct a circle Γ so that the inversion of A about Γ is O. Now invert B about Γ and let its image be B^{\prime}. Construct the line through O and B^{\prime}. Inverting this line about Γ gives us a circle going through A and B.

This circle is orthogonal to ω because the line $O B^{\prime}$ is orthogonal to ω.
Problem 1.6. First suppose the first line ℓ_{1} goes through O. Let the second line ℓ_{2} intersect ℓ_{1} outside the circle at an angle α. The inversion of ℓ_{2} about ω is a circle Γ passing through O. The inverted angle β is the angle of intersection of $O A$ and the tangent to Γ at A^{\prime}. We have $O A^{\prime} P^{\prime} \sim O P A$ so $\angle O A P=\angle O P^{\prime} A^{\prime}=\alpha$. But β subtends the same arc of Γ^{\prime} so $\alpha=\beta$ (this theorem works even for tangent lines).

For case where ℓ_{1} and ℓ_{2} do not go through the origin, just note that when we invert them about ω and construct the tangent lines, these tangent lines are parallel to ℓ_{1} and ℓ_{2} respectively.

Problem 1.8. Assume A and C are not colinear (this case follows easily). If A^{\prime} and C^{\prime} are the images of A and C respectively, then $O A B \sim O B^{\prime} A^{\prime}$. Therefore $\frac{|A C|}{\mid A C^{\prime} C^{\prime}}=\frac{|O A|}{\left|O C^{\prime}\right|}$ The same argument gives us the analgous statement for $B C, B D$, and $A D$. Thus the cross ratio becomes

$$
\frac{|A C|}{\left|A^{\prime} C^{\prime}\right|} \frac{\left|B^{\prime} C^{\prime}\right|}{|B C|} \frac{|B D|}{\left|B^{\prime} D^{\prime}\right|} \frac{\left|A^{\prime} D^{\prime}\right|}{|A D|}=1
$$

Rearranging we obtain $[A, B ; C, D]=\left[A^{\prime}, B^{\prime} ; C^{\prime}, D^{\prime}\right]$.

Problem 2.3. e) We assume P and Q are ordered so that $|O P| \leq|O Q|$ and $|A P| \geq|A Q|$. We have

$$
\log \left(\frac{|A P||O Q|}{|O P||A Q|}\right)=\log \frac{1+r}{1-r}
$$

Remark: the last quantity is actually given in terms of the hyperbolic tangent function $2 \tanh ^{-1} r$ defined by

$$
\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{1-e^{-2 x}}{1+e^{-2 x}}
$$

Problem 2.9. WLOG we take ℓ to be the diameter of $\mathbb{D} . X_{1} R P$ is isosceles since its

sides are the tangents to the circle going through P. Since $\angle X_{1} O P=\pi / 2$ we have $2 \alpha+$ thet $a=\pi / 2$ or $\alpha=\pi / 4-\theta / 2$. Now we calculate

$$
d=d(0, P)=\tan \alpha=\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)=\frac{1-\tan (\theta / 2)}{1+\tan (\theta / 2)}
$$

exponentiating and using 2.3 e) we get

$$
e^{d}=\frac{1+\tan \alpha}{1-\tan \alpha}=\frac{1}{\tan \theta}
$$

Hence $e^{-d}=\tan (\theta / 2)$.

