Hyperbolic Geometry Solutions

LAMC

November 4, 2018

Problem 1.3. b) By Power of a Point (Problem 1.1) we have $|ON| \cdot |OM| = |OA|^2 = r^2$, so each orthogonal circle is fixed under inversion.

c) Lines through O, the center of ω , are mapped to themselves. Now consider the case when the line ℓ is outside the circle of inversion. Drop the foot from O to A. Invert A

about the circle to obtain A'. Then construct the circle Γ going through O and A' with radius |OA'|/2. Let P be a point on ℓ and let P' be the intersection of the line through OP with Γ . We must show $|OP'||OP| = r^2$. We have $OP'A' \sim OAP$ so

$$\frac{|OP'|}{|OA|} = \frac{|OA|}{|OP|} \implies |OP'||OP| = |OA|^2$$

The same argument shows a circle through the center of ω is mapped to a line outside ω . Now suppose the line intersects ω . The same argument works.

Now consider the case of a circle Γ outside of the circle of inversion ω .

Draw the line through the centers O and O_2 . Let A and B be the intersections of this line with Γ . We construct a circle Γ' as follows: Invert A and B about ω to A' and B'respectively and construct the circle through B' and A' with radius |B'A'|/2. Now let Pbe a point on Γ . It suffices to show the inversion P' of P is on Γ' . To that end construct the line through O and P. Let Q be its intersection with Γ and Q' its intersection with Γ' . Now $OA'P' \sim OBQ$. Note that $\angle APQ = \angle OBQ$ since they subtend the same arc. Thus $OA'P \sim OPA$, so we get

$$\frac{|OA'|}{|OP'|} = \frac{|OP|}{|OA|} \implies |OP||OP'| = |OA||OA'| = r^2$$

Problem 1.5. By 1.4 we can construct a circle Γ so that the inversion of A about Γ is O. Now invert B about Γ and let its image be B'. Construct the line through O and B'. Inverting this line about Γ gives us a circle going through A and B.

This circle is orthogonal to ω because the line OB' is orthogonal to ω .

Problem 1.6. First suppose the first line ℓ_1 goes through O. Let the second line ℓ_2 intersect ℓ_1 outside the circle at an angle α . The inversion of ℓ_2 about ω is a circle Γ passing through O. The inverted angle β is the angle of intersection of OA and the tangent to Γ at A'. We have $OA'P' \sim OPA$ so $\angle OAP = \angle OP'A' = \alpha$. But β subtends the same arc of Γ' so $\alpha = \beta$ (this theorem works even for tangent lines).

For case where ℓ_1 and ℓ_2 do not go through the origin, just note that when we invert them about ω and construct the tangent lines, these tangent lines are parallel to ℓ_1 and ℓ_2 respectively.

Problem 1.8. Assume A and C are not colinear (this case follows easily). If A' and C' are the images of A and C respectively, then $OAB \sim OB'A'$. Therefore $\frac{|AC|}{|A'C'|} = \frac{|OA|}{|OC'|}$ The same argument gives us the analgous statement for BC, BD, and AD. Thus the cross ratio becomes

$$\frac{|AC|}{|A'C'|} \frac{|B'C'|}{|BC|} \frac{|BD|}{|B'D'|} \frac{|A'D'|}{|AD|} = 1$$

Rearranging we obtain [A, B; C, D] = [A', B'; C', D'].

Problem 2.3. e) We assume P and Q are ordered so that $|OP| \le |OQ|$ and $|AP| \ge |AQ|$. We have

$$\log\left(\frac{|AP||OQ|}{|OP||AQ|}\right) = \log\frac{1+r}{1-r}$$

Remark: the last quantity is actually given in terms of the hyperbolic tangent function $2 \tanh^{-1} r$ defined by

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

Problem 2.9. WLOG we take ℓ to be the diameter of \mathbb{D} . X_1RP is isosceles since its

sides are the tangents to the circle going through P. Since $\angle X_1 OP = \pi/2$ we have $2\alpha + theta = \pi/2$ or $\alpha = \pi/4 - \theta/2$. Now we calculate

$$d = d(0, P) = \tan \alpha = \tan \left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \frac{1 - \tan(\theta/2)}{1 + \tan(\theta/2)}$$

exponentiating and using 2.3 e) we get

$$e^d = \frac{1 + \tan \alpha}{1 - \tan \alpha} = \frac{1}{\tan \theta}$$

Hence $e^{-d} = \tan(\theta/2)$.