
Gaussian Integers II

Matthew Gherman and Adam Lott

High School I – October 14, 2018

This week, we will continue to investigate the irreducible elements of Z[i] and eventually characterize
the integers which are sums of two squares. Last week, we showed that prime integers that are
congruent to 3 mod 4 can not be written as sums of two squares and therefore are irreducible in Z[i].
Now we have to analyze the more difficult case of when p ≡ 1 mod 4.

Exercise 1. (a) Find an integer a such that a4 ≡ 1 mod 5 but ak ≢ 1 mod 5 for any 0 ≤ k ≤ 3.

(b) Find an integer a such that a16 ≡ 1 mod 17 but ak ≢ 1 mod 17 for any 0 ≤ k ≤ 15.

It turns out that this is always possible. If p is any prime integer, then there exists some 0 ≤ a ≤ p − 1
such that ap−1 ≡ 1 mod p but ak ≢ 1 mod p for any 0 ≤ k ≤ p − 2. Such an a is called a primitive root
mod p.

Another fact: we know that if x is an integer such that x2 = 1, then x = 1 or −1. This is also true mod
p, i.e. if x is an integer such that x2 ≡ 1 mod p, then x ≡ 1 or −1 mod p. Using these two facts, prove
the following.

Exercise 2. If p ≡ 1 mod 4, prove that there is some integer n such that p divides n2
+ 1 (Hint: this

is equivalent to showing that some n satisfies n2
≡ −1 mod p. Let a be a primitive root mod p and

proceed).

Exercise 3. (CHALLENGE). Prove that if p is a prime integer and a ≢ 0 mod p, then ap−1 ≡ 1 mod
p (Hint: compare the two sets {1,2,3,⋯, p − 1} and {a,2a,3a,⋯, (p − 1)a}). This result is known as
Fermat’s little theorem.

Now we are ready to analyze the case when p ≡ 1 mod 4.

Exercise 4. The purpose of this exercise is to prove that if p ≡ 1 mod 4, then p factors as p =

(a + bi)(a − bi) where a + bi is an irreducible element of Z[i].

(a) Factor n2
+ 1 in the Gaussian integers for any integer n.

(b) Let p be a prime integer congruent to 1 mod 4 and let n be any integer. Show that p does not
divide n + i via a contradiction argument. (Hint: What can we say about p and n − i?)

(c) By the claim above, p divides n2
+ 1 for some integer n. Prove that p is not irreducible.

(d) Show that p factors as p = (a + bi)(a − bi) for integers a, b. (Hint: Exercise 8(a))

(e) Show that a + bi and a − bi are irreducible Gaussian integers. (Hint: Use the norm)
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We are now ready to write down all irreducible elements of Z[i]. As a recap of what we have done,
there are three classes of irreducible elements in the Gaussian integers.

1. We know that 1 + i is irreducible via the norm.

2. We showed that prime integers congruent to 3 mod 4 are irreducible.

3. Finally, we showed that when p is a prime integer congruent to 1 mod 4, the distinct irreducible
factors a + bi and a − bi of p = a2 + b2 are irreducible.

We want to show that these are all the irreducible elements of the Gaussian integers.

Exercise 5. Assume that α = a + bi is an irreducible element of Z[i].

(a) Prove that α divides N(α).

(b) Conclude that α divides some prime integer. (Hint: N(α) is an integer that might not be prime)

(c) Conclude that α must be an element of our list.

Now, finally, we are able to prove a complete characterization of which positive integers are sums of
two squares. The following theorem was first proved by Fermat.

Theorem 1. Let n be a positive integer. Write the prime factorization of n as

n = 2k
⋅ pe11 ⋯p

ek
k ⋅ q

f1
1 ⋯q

fd
d

where p1,⋯pk are distinct primes congruent to 1 mod 4 and q1,⋯, qd are distinct primes congruent to
3 mod 4. Then n is the sum of two squares if and only if all of the fj are even.

Exercise 6. Prove the above theorem.

(a) Prove that n is the sum of two squares if and only if there is some Gaussian integer γ = A +Bi
such that N(γ) = n.

(b) Prove that if α is irreducible in Z[i], then N(α) is equal to 2, a prime congruent to 1 mod 4, or
the square of a prime congruent to 3 mod 4.

(c) Suppose n = N(γ) for some γ ∈ Z[i]. Show that each fj must be even (Hint: factor γ = α1⋯αm as
a product of irreducible Gaussian integers. Take the norm and use part (b)).

(d) Suppose that each fj is even. Show that there exist irreducible Gaussian integers α1,⋯, αm such
that N(α1)⋯N(αm) = n (Hint: Exercise 8(c)).

(e) Explain why parts (a)-(d) together complete the proof of the theorem.
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