Gaussian Integers II

Matthew Gherman and Adam Lott

High School I – October 14, 2018

This week, we will continue to investigate the irreducible elements of $\mathbb{Z}[i]$ and eventually characterize the integers which are sums of two squares. Last week, we showed that prime integers that are congruent to 3 mod 4 can not be written as sums of two squares and therefore are irreducible in $\mathbb{Z}[i]$. Now we have to analyze the more difficult case of when $p \equiv 1 \mod 4$.

Exercise 1. (a) Find an integer a such that $a^4 \equiv 1 \mod 5$ but $a^k \not\equiv 1 \mod 5$ for any $0 \le k \le 3$.

(b) Find an integer a such that $a^{16} \equiv 1 \mod 17$ but $a^k \not\equiv 1 \mod 17$ for any $0 \le k \le 15$.

It turns out that this is always possible. If p is any prime integer, then there exists some $0 \le a \le p-1$ such that $a^{p-1} \equiv 1 \mod p$ but $a^k \not\equiv 1 \mod p$ for any $0 \le k \le p-2$. Such an a is called a *primitive root* mod p.

Another fact: we know that if x is an integer such that $x^2 = 1$, then x = 1 or -1. This is also true mod p, i.e. if x is an integer such that $x^2 \equiv 1 \mod p$, then $x \equiv 1 \text{ or } -1 \mod p$. Using these two facts, prove the following.

Exercise 2. If $p \equiv 1 \mod 4$, prove that there is some integer n such that p divides $n^2 + 1$ (Hint: this is equivalent to showing that some n satisfies $n^2 \equiv -1 \mod p$. Let a be a primitive root mod p and proceed).

Exercise 3. (CHALLENGE). Prove that if p is a prime integer and $a \neq 0 \mod p$, then $a^{p-1} \equiv 1 \mod p$ (Hint: compare the two sets $\{1, 2, 3, \dots, p-1\}$ and $\{a, 2a, 3a, \dots, (p-1)a\}$). This result is known as *Fermat's little theorem*.

Now we are ready to analyze the case when $p \equiv 1 \mod 4$.

Exercise 4. The purpose of this exercise is to prove that if $p \equiv 1 \mod 4$, then p factors as p = (a+bi)(a-bi) where a+bi is an irreducible element of $\mathbb{Z}[i]$.

- (a) Factor $n^2 + 1$ in the Gaussian integers for any integer n.
- (b) Let p be a prime integer congruent to 1 mod 4 and let n be any integer. Show that p does not divide n + i via a contradiction argument. (Hint: What can we say about p and n i?)
- (c) By the claim above, p divides $n^2 + 1$ for some integer n. Prove that p is not irreducible.
- (d) Show that p factors as p = (a + bi)(a bi) for integers a, b. (Hint: Exercise 8(a))
- (e) Show that a + bi and a bi are irreducible Gaussian integers. (Hint: Use the norm)

We are now ready to write down all irreducible elements of $\mathbb{Z}[i]$. As a recap of what we have done, there are three classes of irreducible elements in the Gaussian integers.

- 1. We know that 1 + i is irreducible via the norm.
- 2. We showed that prime integers congruent to 3 mod 4 are irreducible.
- 3. Finally, we showed that when p is a prime integer congruent to 1 mod 4, the distinct irreducible factors a + bi and a bi of $p = a^2 + b^2$ are irreducible.

We want to show that these are all the irreducible elements of the Gaussian integers.

Exercise 5. Assume that $\alpha = a + bi$ is an irreducible element of $\mathbb{Z}[i]$.

- (a) Prove that α divides $N(\alpha)$.
- (b) Conclude that α divides some prime integer. (Hint: $N(\alpha)$ is an integer that might not be prime)
- (c) Conclude that α must be an element of our list.

Now, finally, we are able to prove a complete characterization of which positive integers are sums of two squares. The following theorem was first proved by Fermat.

Theorem 1. Let n be a positive integer. Write the prime factorization of n as

$$n=2^k\cdot p_1^{e_1}{\cdots} p_k^{e_k}\cdot q_1^{f_1}{\cdots} q_d^{f_d}$$

where $p_1, \dots p_k$ are distinct primes congruent to 1 mod 4 and q_1, \dots, q_d are distinct primes congruent to 3 mod 4. Then n is the sum of two squares if and only if all of the f_j are even.

Exercise 6. Prove the above theorem.

- (a) Prove that n is the sum of two squares if and only if there is some Gaussian integer $\gamma = A + Bi$ such that $N(\gamma) = n$.
- (b) Prove that if α is irreducible in $\mathbb{Z}[i]$, then $N(\alpha)$ is equal to 2, a prime congruent to 1 mod 4, or the square of a prime congruent to 3 mod 4.
- (c) Suppose $n = N(\gamma)$ for some $\gamma \in \mathbb{Z}[i]$. Show that each f_j must be even (Hint: factor $\gamma = \alpha_1 \cdots \alpha_m$ as a product of irreducible Gaussian integers. Take the norm and use part (b)).
- (d) Suppose that each f_j is even. Show that there exist irreducible Gaussian integers $\alpha_1, \dots, \alpha_m$ such that $N(\alpha_1) \cdots N(\alpha_m) = n$ (Hint: Exercise 8(c)).
- (e) Explain why parts (a)-(d) together complete the proof of the theorem.