Lesson 4: Induction in Arithmetic

Konstantin Miagkov

April 29, 2018

Problem 1.

Show that $n^5 - n$ is divisible by 5 for any positive integer n.

Problem 2.

a) Show that $n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2$ is divisible by 5 for any positive integer *n*.

b) Let *m* be a positive integer not divisible by 2 or 3. Show that $n^2 + (n + 1)^2 + \ldots + (n + m - 1)^2$ is divisible by *m* for any positive integer *n*. Hint: remember the formula

$$1^{2} + 2^{2} + \ldots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

which was shown on the board during our very first induction class.

Problem 3.

Show that $3^{2n+2} + 8n - 9$ is divisible by 16 for any positive integer n.

Problem 4. Kiselev 271, p. 101

Problem 5.

Show that in a quadrilateral ABCD we have $\angle ABD = \angle ACD$ if and only if points A, B, C, D lie on the same circle. Such a quadrilateral is is called *cyclic* or *inscribed*.

Problem 6.

Show that if in a quadrilateral ABCD we have $\angle ABC + \angle ADC = 180^{\circ}$, then it is cyclic. This provides a converse to the problem 4 from last week, and gives us another characterization of a cyclic quadrilateral.